1.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
2.Common characteristics and regulatory mechanisms of airway mucus hypersecretion in lung disease.
Ze-Qiang LIN ; Shi-Man PANG ; Si-Yuan ZHU ; Li-Xia HE ; Wei-Guo KONG ; Wen-Ju LU ; Zi-Li ZHANG
Acta Physiologica Sinica 2025;77(5):989-1000
In a healthy human, the airway mucus forms a thin, protective liquid layer covering the surface of the respiratory tract. It comprises a complex blend of mucin, multiple antibacterial proteins, metabolic substances, water, and electrolytes. This mucus plays a pivotal role in the lungs' innate immune system by maintaining airway hydration and capturing airborne particles and pathogens. However, heightened mucus secretion in the airway can compromise ciliary clearance, obstruct the respiratory tract, and increase the risk of pathogen colonization and recurrent infections. Consequently, a thorough exploration of the mechanisms driving excessive airway mucus secretion is crucial for establishing a theoretical foundation for the eventual development of targeted drugs designed to reduce mucus production. Across a range of lung diseases, excessive airway mucus secretion manifests with unique characteristics and regulatory mechanisms, all intricately linked to mucin. This article provides a comprehensive overview of the characteristics and regulatory mechanisms associated with excessive airway mucus secretion in several prevalent lung diseases.
Humans
;
Mucus/metabolism*
;
Mucins/physiology*
;
Lung Diseases/metabolism*
;
Respiratory Mucosa/metabolism*
;
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Asthma/physiopathology*
;
Cystic Fibrosis/physiopathology*
;
Mucociliary Clearance/physiology*
3.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
4.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
5.Evaluation of nutritional value of three kinds of medicinal snakes based on content of 15 amino acids.
Xi WANG ; Ye-Yuan LIN ; Wen-Ting ZHONG ; Zhi-Guo MA ; Meng-Hua WU ; Hui CAO ; Ying ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2411-2421
A high-performance liquid chromatography method using pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate was developed to determine the content of 15 amino acids in the medicinal snakes Bungarus Parvus, Agkistrodon, and Zaocys. The results showed that the total amino acid(TAA) content ranged from 277.13 to 515.05 mg·g~(-1), with the top four amino acids in all three species being glutamic acid(Glu), glycine(Gly), aspartic acid(Asp), and lysine(Lys). The essential amino acid(EAA) content ranged from 74.56 to 203.94 mg·g~(-1), with Agkistrodon exhibiting the highest content. The non-essential amino acid(NEAA), semi-essential amino acid(semi-EAA), and medicinal amino acid(MAA) content ranged from 189.06 to 318.23, 12.89 to 33.53, and 179.83 to 342.33 mg·g~(-1), respectively, with Zaocys having the highest content in these categories. Amino acid nutritional value was evaluated using the amino acid ratio(RAA), amino acid ratio coefficient(RCAA), and amino acid ratio coefficient score(SRCAA), and the results indicated that all three medicinal snakes possessed good nutritional value. The amino acid composition was similar across the species, though significant differences in content were observed. Based on these differences, an orthogonal partial least squares-discriminant analysis(OPLS-DA) model was established, which could clearly distinguish between the three medicinal snake species. The key differences in amino acid content included Gly, tyrosine(Tyr), Glu, and serine(Ser), which may be related to the observed clinical application differences among the species. Further research into the mechanisms of these differential amino acids is expected to provide more insights into the clinical application disparities of these three medicinal snake species.
Amino Acids/chemistry*
;
Animals
;
Nutritive Value
;
Chromatography, High Pressure Liquid
;
Snakes/classification*
;
Bungarus
6.Liuwei Dihuang Pills improve chemotherapy-induced ovarian injury in mice by promoting the proliferation of female germline stem cells.
Bo JIANG ; Wen-Yan ZHANG ; Guang-di LIN ; Xiao-Qing MA ; Guo-Xia LAN ; Jia-Wen ZHONG ; Ling QIN ; Jia-Li MAI ; Xiao-Rong LI
China Journal of Chinese Materia Medica 2025;50(9):2495-2504
This study primarily investigates the effect of Liuwei Dihuang Pills on the activation and proliferation of female germline stem cells(FGSCs) in the ovaries and cortex of mice with premature ovarian failure(POF), and how it improves ovarian function. ICR mice were randomly divided into the control group, model group, Liuwei Dihuang Pills group, Liuwei Dihuang Pills double-dose group, and estradiol valerate group. A mouse model of POF was established by intraperitoneal injection of cyclophosphamide. After successful modeling, the mice were treated with Liuwei Dihuang Pills or estradiol valerate for 28 days. Vaginal smears were prepared to observe the estrous cycle and body weight. After the last administration, mice were sacrificed and sampled. Serum levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-Müllerian hormone(AMH) were measured by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe ovarian morphology and to count follicles at all stages to evaluate ovarian function. Immunohistochemistry was used to detect the expression of mouse vasa homolog(MVH), a marker of ovarian FGSCs. Immunofluorescence staining, using co-labeling of MVH and proliferating cell nuclear antigen(PCNA), was used to detect the expression and localization of specific markers of FGSCs. Western blot was employed to assess the protein expression of MVH, octamer-binding transcription factor 4(Oct4), and PCNA in the ovaries. The results showed that compared with the control group, the model group exhibited disordered estrous cycles, decreased ovarian index, increased atretic follicles, and a reduced number of follicles at all stages. FSH and LH levels were significantly elevated, while AMH and E_2 levels were significantly reduced, indicating the success of the model. After treatment with Liuwei Dihuang Pills or estradiol valerate, hormone levels improved, the number of atretic follicles decreased, and the number of follicles at all stages increased. MVH marker protein and PCNA proliferative protein expression in ovarian tissue also increased. These results suggest that Liuwei Dihuang Pills regulate estrous cycles and hormone disorders in POF mice, promote the proliferation of FGSCs, improve follicular development in POF mice, and enhance ovarian function.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Inbred ICR
;
Ovary/cytology*
;
Primary Ovarian Insufficiency/genetics*
;
Follicle Stimulating Hormone/metabolism*
;
Humans
;
Anti-Mullerian Hormone/blood*
;
Antineoplastic Agents/adverse effects*
;
Luteinizing Hormone/metabolism*
;
Cyclophosphamide/adverse effects*
7.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
8.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
9.Effects and mechanisms of Yuxuebi Tablets combined with ibuprofen in treating chronic musculoskeletal pain through "integrated regulation of inflammation and pain-related oxylipins".
Ao-Qing HUANG ; Wen-Li WANG ; Guo-Xin ZHANG ; Ying LIU ; Na LIN ; Chun-Yan ZHU
China Journal of Chinese Materia Medica 2025;50(13):3763-3777
This study adopted a three-dimensional "effect-dose-mechanism" evaluation system to screen the optimal regimen of Yuxuebi Tablets(YXB) combined with ibuprofen(IBU) for chronic musculoskeletal pain(CMP) intervention and elucidate its pharmacological mechanism, so as to provide a scientific basis for the clinical application of the regimen. The experiments were conducted using 8-week-old ICR mice, which were randomly divided into sham operation(sham) group, model(CFA) group, IBU group, YXB group, stasis paralysis tablets combined with ibuprofen low-dose group(IBU-L-YXB), stasis paralysis combined with ibuprofen high-dose group(IBU-H-YXB), stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen discontinuation on the 10th day of administration(IBU-10-YXB), and stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen halving on the 10th day of administration(IBU-1/2-YXB) group. An animal model was established using the CFA plantar injection method. On D0(the second day post-modeling), the success of model establishment was assessed, followed by continuous drug administration for 18 consecutive days from D1 to D18. During this period, mechanical pain threshold was measured by the Von Frey test; thermal hyperalgesia was detected by the hot plate test, and depression-like behavior was observed by the tail suspension test. After treatment, peripheral blood was collected from all groups for complete blood biochemical analysis, and the injected feet of the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups were subjected to oxylipin metabolomics analysis. Immunofluorescence double staining was further performed to detect the co-expression of key oxylipin metabolic enzymes(COX2, LTA4H, and 5/12/15-LOX) and macrophage marker CD68 in the sham, CFA, IBU, and YXB-L/M/H groups. Subsequently, confirmatory analysis of positive indicators was conducted in the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups. On D6(acute phase), mechanical pain sensitivity data showed that compared with the CFA group, only the three combination groups(IBU-YXB, IBU-10-YXB, and IBU-1/2-YXB) exhibited significantly increased paw withdrawal thresholds. On D17(chronic phase), only the IBU-10-YXB group showed a mechanical pain threshold significantly higher than all other monotherapy and combination groups. On D17, thermal pain data showed that compared with the CFA group, all groups except IBU-1/2-YXB had significantly prolonged paw withdrawal latency. On D18, tail suspension data showed that compared with the CFA group, the YXB, IBU-YXB, and IBU-10-YXB groups had significantly reduced immobility time. In summary, IBU-10-YXB stably improved the core symptoms of acute and chronic inflammatory pain. Complete blood count data showed that compared with the sham group, the CFA group had significantly increased mean platelet volume(MPV), while compared with the CFA group, the IBU-YXB and IBU-10-YXB groups had significantly reduced MPV. Moreover, the platelet distribution width(PDW) of the IBU-10-YXB group was further reduced compared with the CFA group. These data suggest that the IBU-10-YXB combination regimen has superior effects on inflammation and blood circulation improvement compared with other treatment groups. At the mechanistic level, each treatment group differentially regulated pro-inflammatory and pro-resolving oxylipin(SPM). Specifically, compared with the CFA group, the IBU and IBU-YXB groups significantly inhibited the synthesis of the prostaglandin family downstream of COX2, reducing pro-inflammatory oxylipins PGD2 and 6-keto-PGF1α but inhibiting PGE1 and PGE2, which played positive roles in peripheral circulation, vasodilation, and inflammation resolution. Compared with the CFA group, the YXB group tended to inhibit the pro-inflammatory oxylipin LTB4 downstream of LTA4H and increase SPMs such as LXA4. The IBU-10-YXB group bidirectionally regulated pro-inflammatory oxylipins and SPMs. Compared with IBU, IBU-10-YXB significantly inhibited the pro-inflammatory mediator 5-HETE. Meanwhile, IBU-10-YXB broadly upregulated SPMs, as evidenced by significant upregulation of LXA4 compared with the CFA group, significant upregulation of LXA5 compared with the IBU and IBU-YXB groups, significant upregulation of RvD1 compared with the CFA group and all other treatment groups, and significant upregulation of RvD5 compared with the sham group. Immunofluorescence double staining results were as follows: compared with the CFA group, the IBU group specifically inhibited the oxylipin metabolic enzyme COX2. In the YXB group, COX2, LTA4H, and 5/12-LOX were significantly inhibited. Within the optimal analgesic dose range, YXB's inhibitory effects on COX2 and LTA4H were dose-dependent, while its inhibitory effects on 5/12-LOX were inversely dose-dependent. The two combination groups(IBU-YXB and IBU-10-YXB) inhibited COX2 and LTA4H without significantly affecting 5-LOX, while IBU-10-YXB further significantly inhibited 12-LOX. These results suggest that the IBU-10-YXB combination regimen effectively maintains stable inhibition of COX2, LTA4H, and 12-LOX while enhancing 5-LOX expression. This combinatorial strategy effectively suppresses pro-inflammatory oxylipins and promotes SPM biosynthesis, overcoming IBU's analgesic ceiling effect and its blockade of pain resolution pathways while compensating for YXB's inability to effectively intervene in acute pain and inflammation. Therefore, it achieves more stable anti-inflammatory, analgesic, and antidepressant effects.
Animals
;
Ibuprofen/administration & dosage*
;
Mice
;
Mice, Inbred ICR
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Musculoskeletal Pain/immunology*
;
Tablets
;
Humans
;
Chronic Pain/metabolism*
;
Drug Therapy, Combination
;
Disease Models, Animal
10.Application of Assessment Scales in Palliative Care for Glioma: A Systematic Review.
Zhi-Yuan XIAO ; Tian-Rui YANG ; Ya-Ning CAO ; Wen-Lin CHEN ; Jun-Lin LI ; Ting-Yu LIANG ; Ya-Ning WANG ; Yue-Kun WANG ; Xiao-Peng GUO ; Yi ZHANG ; Yu WANG ; Xiao-Hong NING ; Wen-Bin MA
Chinese Medical Sciences Journal 2025;40(3):211-218
BACKGROUND AND OBJECTIVE: Patients with glioma experience a high symptom burden and have diverse palliative care needs. However, the assessment scales used in palliative care remain non-standardized and highly heterogeneous. To evaluate the application patterns of the current scales used in palliative care for glioma, we aim to identify gaps and assess the need for disease-specific scales in glioma palliative care. METHODS: We conducted a systematic search of five databases including PubMed, Web of Science, Medline, EMBASE, and CINAHL for quantitative studies that reported scale-based assessments in glioma palliative care. We extracted data on scale characteristics, domains, frequency, and psychometric properties. Quality assessments were performed using the Cochrane ROB 2.0 and ROBINS-I tools. RESULTS: Of the 3,405 records initially identified, 72 studies were included. These studies contained 75 distinct scales that were used 193 times. Mood (21.7%), quality of life (24.4%), and supportive care needs (5.2%) assessments were the most frequently assessed items, exceeding half of all scale applications. Among the various assessment dimensions, the Distress Thermometer (DT) was the most frequently used tool for assessing mood, while the Short Form-36 Health Survey Questionnaire (SF-36) was the most frequently used tool for assessing quality of life. The Mini Mental Status Examination (MMSE) was the most common tool for cognitive assessment. Performance status (5.2%) and social support (6.8%) were underrepresented. Only three brain tumor-specific scales were identified. Caregiver-focused scales were limited and predominantly burden-oriented. CONCLUSIONS: There are significant heterogeneity, domain imbalances, and validation gaps in the current use of assessment scales for patients with glioma receiving palliative care. The scale selected for use should be comprehensive and user-friendly.
Humans
;
Glioma/psychology*
;
Palliative Care/methods*
;
Quality of Life
;
Psychometrics
;
Brain Neoplasms/psychology*

Result Analysis
Print
Save
E-mail