1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
4.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.Modified Lianpoyin Formula Treats Hp-associated Gastritis by Regulating Mitochondrial Autophagy and NLRP3 Inflammasome Signaling Pathway
Siyi ZHANG ; Haopeng DANG ; Wenliang LYU ; Wentao ZHOU ; Wei GUO ; Lin LIU ; Lan ZENG ; Yujie SUN ; Luming LIANG ; Yi ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):178-187
ObjectiveTo explore the effect of modified Lianpoyin formula (LPYJWF) in the treatment of Helicobacter pylori (Hp)-associated gastric mucosal damage based on mitochondrial autophagy and NLRP3 inflammasome signaling pathway. MethodsA total of 60 eight-week-old Balb/c male mice were assigned via the random number table method into control, model, high-dose LPYJWF (LPYJWF-H, 27.3 g·kg-1·d-1), medium-dose LPYJWF (LPYJWF-M, 13.65 g·kg-1·d-1), low-dose LPYJWF (LPYJWF-L, 6.83 g·kg-1·d-1), and quadruple therapy groups. Except the control group, other groups were modeled for Hp infection. Mice were administrated with LPYJWF at corresponding doses by gavage. Quadruple therapy group was given omeprazole (6.06 mg·kg-1·d-1) + amoxicillin (303 mg·kg-1·d-1) + clarithromycin (151.67 mg·kg-1·d-1) + colloidal pectin capsules (30.3 mg·kg-1·d-1) by gavage. The control group was given an equal volume of 0.9% NaCl for 14 days. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of gastric mucosa, and Warthin-Starry (W-S) silver staining was used to detect Hp colonization. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of the gastric tissue, and immunofluorescence co-localization assay was adopted to detect the expression of mitochondrial transcription factor A (TFAM) and translocase of the outer mitochondrial membrane member 20 (TOMM20). The water-soluble tetrazolium salt method and thiobarbituric acid method were used to determine the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), respectively, in the gastric tissue. Western blot was employed to measure the protein levels of PTEN-induced kinase 1 (PINK1), Parkin, p62, microtubule-associated protein 1 light chain 3 (LC3), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Real-time quantitative PCR was employed to assess the mRNA levels of PINK1, Parkin, p62, and LC3. ResultsCompared with the control group, the model group presented obvious gastric mucosal damage, colonization of a large number of Hp, severe mitochondrial damage, vacuolated structures due to excessive autophagy, reduced TOMM20 and TFAM co-expression in the gastric mucosal tissue, and reduced SOD and increased MDA (P<0.01). In addition, the gastric tissue in the model group showed up-regulated protein and mRNA levels of PINK1, Parkin, and LC3 and down-regulated protein and mRNA levels of p62 (P<0.01, as well as increased expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 (P<0.01). Compared with the model group, the LPYJWF and quadruple therapy groups showed alleviated pathological damage of gastric mucosa, reduced Hp colonization, mitigated mitochondrial damage, and increased co-expression of TOMM20 and TFAM. The SOD level was elevated in the LPYJWF-L group (P<0.01), and the MDA levels became lowered in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). Furthermore, the LPYJWF and quadruple therapy groups showed down-regulated mRNA levels of PINK1, Parkin, and LC3 and protein levels of PINK1 and Parkin, and up-regulated mRNA level of p62 (P<0.01). The LPYJWF-M, LPYJWF-H, and quadruple therapy groups showcased down-regulated LC3 Ⅱ/LC3 Ⅰ level (P<0.05, P<0.01) and up-regulated protein level of p62 (P<0.01). The expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 were reduced in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). ConclusionLPYJWF ameliorates gastric mucosal damage and exerts mucosa-protective effects in Hp-infected mice, which may be related to the inhibition of excessive mitochondrial autophagy, thereby inhibiting the activation of the NLRP3 inflammasome pathway.
7.Modified Lianpoyin Formula Treats Hp-associated Gastritis by Regulating Mitochondrial Autophagy and NLRP3 Inflammasome Signaling Pathway
Siyi ZHANG ; Haopeng DANG ; Wenliang LYU ; Wentao ZHOU ; Wei GUO ; Lin LIU ; Lan ZENG ; Yujie SUN ; Luming LIANG ; Yi ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):178-187
ObjectiveTo explore the effect of modified Lianpoyin formula (LPYJWF) in the treatment of Helicobacter pylori (Hp)-associated gastric mucosal damage based on mitochondrial autophagy and NLRP3 inflammasome signaling pathway. MethodsA total of 60 eight-week-old Balb/c male mice were assigned via the random number table method into control, model, high-dose LPYJWF (LPYJWF-H, 27.3 g·kg-1·d-1), medium-dose LPYJWF (LPYJWF-M, 13.65 g·kg-1·d-1), low-dose LPYJWF (LPYJWF-L, 6.83 g·kg-1·d-1), and quadruple therapy groups. Except the control group, other groups were modeled for Hp infection. Mice were administrated with LPYJWF at corresponding doses by gavage. Quadruple therapy group was given omeprazole (6.06 mg·kg-1·d-1) + amoxicillin (303 mg·kg-1·d-1) + clarithromycin (151.67 mg·kg-1·d-1) + colloidal pectin capsules (30.3 mg·kg-1·d-1) by gavage. The control group was given an equal volume of 0.9% NaCl for 14 days. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of gastric mucosa, and Warthin-Starry (W-S) silver staining was used to detect Hp colonization. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of the gastric tissue, and immunofluorescence co-localization assay was adopted to detect the expression of mitochondrial transcription factor A (TFAM) and translocase of the outer mitochondrial membrane member 20 (TOMM20). The water-soluble tetrazolium salt method and thiobarbituric acid method were used to determine the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), respectively, in the gastric tissue. Western blot was employed to measure the protein levels of PTEN-induced kinase 1 (PINK1), Parkin, p62, microtubule-associated protein 1 light chain 3 (LC3), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Real-time quantitative PCR was employed to assess the mRNA levels of PINK1, Parkin, p62, and LC3. ResultsCompared with the control group, the model group presented obvious gastric mucosal damage, colonization of a large number of Hp, severe mitochondrial damage, vacuolated structures due to excessive autophagy, reduced TOMM20 and TFAM co-expression in the gastric mucosal tissue, and reduced SOD and increased MDA (P<0.01). In addition, the gastric tissue in the model group showed up-regulated protein and mRNA levels of PINK1, Parkin, and LC3 and down-regulated protein and mRNA levels of p62 (P<0.01, as well as increased expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 (P<0.01). Compared with the model group, the LPYJWF and quadruple therapy groups showed alleviated pathological damage of gastric mucosa, reduced Hp colonization, mitigated mitochondrial damage, and increased co-expression of TOMM20 and TFAM. The SOD level was elevated in the LPYJWF-L group (P<0.01), and the MDA levels became lowered in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). Furthermore, the LPYJWF and quadruple therapy groups showed down-regulated mRNA levels of PINK1, Parkin, and LC3 and protein levels of PINK1 and Parkin, and up-regulated mRNA level of p62 (P<0.01). The LPYJWF-M, LPYJWF-H, and quadruple therapy groups showcased down-regulated LC3 Ⅱ/LC3 Ⅰ level (P<0.05, P<0.01) and up-regulated protein level of p62 (P<0.01). The expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 were reduced in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). ConclusionLPYJWF ameliorates gastric mucosal damage and exerts mucosa-protective effects in Hp-infected mice, which may be related to the inhibition of excessive mitochondrial autophagy, thereby inhibiting the activation of the NLRP3 inflammasome pathway.
8.Aromatic Substances and Their Clinical Application: A Review
Yundan GUO ; Lulu WANG ; Zhili ZHANG ; Chen GUO ; Zhihong PI ; Wei GONG ; Zongping WU ; Dayu WANG ; Tianle GAO ; Cai TIE ; Yuan LIN ; Jiandong JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):264-272
Aromatherapy refers to the method of using the aromatic components of plants in appropriate forms to act on the entire body or a specific area to prevent and treat diseases. Essential oils used in aromatherapy are hydrophobic liquids containing volatile aromatic molecules, such as limonene, linalool, linalool acetate, geraniol, and citronellol. These chemicals have been extensively studied and shown to have a variety of functions, including reducing anxiety, relieving depression, promoting sleep, and providing pain relief. Terpenoids are a class of organic molecules with relatively low lipid solubility. After being inhaled, they can pass through the nasal mucosa for transfer or penetrate the skin and enter the bloodstream upon local application. Some of these substances also have the ability to cross the blood-brain barrier, thereby exerting effects on the central nervous system. Currently, the academic community generally agrees that products such as essential oils and aromatherapy from aromatic plants have certain health benefits. However, the process of extracting a single component from it and successfully developing it into a drug still faces many challenges. Its safety and efficacy still need to be further verified through more rigorous and systematic experiments. This article systematically elaborated on the efficacy of aromatic substances, including plant extracts and natural small molecule compounds, in antibacterial and antiviral fields and the regulation of nervous system activity. As a result, a deeper understanding of aromatherapy was achieved. At the same time, the potential of these aromatic substances for drug development was thoroughly explored, providing important references and insights for possible future drug research and application.
9.Optimization and practice of occupational education curriculum system for nuclear emergency medical rescue
Jiajin LIN ; Jing LI ; Wei HE ; Shenglong XU ; Dalu LIU ; Wei ZHANG ; Juan GUO ; Xia MIAO ; Yan ZHOU
Chinese Journal of Medical Education Research 2024;23(7):931-935
Nuclear emergency medical rescue is one of the important courses of military medical professional education, and improving the training level of nuclear emergency medical rescue plays a very important role in improving post competency of trainees. Based on the problem of disconnection between "teaching" and "need" in the occupational education of nuclear emergency medical rescue in the past, this study proposes the curriculum goal of "the combination of three abilities" and performs the optimization and practice of the occupational education curriculum system of nuclear emergency medical rescue from the aspects of curriculum setting, curriculum content, teaching methods, and assessment and evaluation. The results show that the new curriculum system can significantly improve the comprehensive ability of nuclear emergency medical rescue among trainees and better meet the requirements for their posts, thereby playing an important role in cultivating high-quality military medical talents in nuclear emergency medical rescue.
10.Practical research on the training of intensive care medicine talents in Xizang based on cloud teaching rounds
Wei DU ; Guoying LIN ; Xiying GUI ; Li CHENG ; Xin CAI ; Jianlei FU ; Xiwei LI ; Pubu ZHUOMA ; Yang CI ; Danzeng QUZHEN ; Lü JI ; Ciren SANGZHU ; Wa DA ; Juan GUO ; Cheng QIU
Chinese Journal of Medical Education Research 2024;23(8):1065-1068
In view of the problem of slow development of intensive care medicine in Xizang, the research team made full use of the national partner assistance to Xizang, gathered resources across all cities in Xizang, and formed a national academic platform for critical care medicine in plateau areas. Adhering to the academic orientation with hemodynamics as the main topic, critical care ultrasound as the bedside dynamic monitoring and evaluation method, and blood flow-oxygen flow resuscitation as the core connotation, we have achieved the goals of improving the critical care talent echelon throughout Xizang, driving the overall progress of intensive care medicine in Xizang, making a figure in China, and focusing on training of top-notch talents.

Result Analysis
Print
Save
E-mail