1.Effect of transcranial magneto-acousto-electrical stimulation on the plasticity of the prefrontal cortex network in mice
Shuai ZHANG ; Zichun LI ; Yihao XU ; Xiaofeng XIE ; Zhongsheng GUO ; Qingyang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1108-1117
BACKGROUND:Transcranial magneto-acoustic-electrical stimulation is a novel non-invasive neural regulation technique that utilizes the induced electric field generated by the coupling effect of ultrasound and static magnetic field to regulate the discharge activity of the nervous system.However,the mechanism by which it affects synaptic plasticity in the brain is still not enough. OBJECTIVE:To explore the effect of transcranial magneto-acoustic-electrical stimulation intensity on synaptic plasticity of the prefrontal cortex neural network in mice. METHODS:(1)Animal experiment:Twenty-four C57 mice were equally and randomly divided into four groups:the control group receiving pseudo-stimulation,the 6.35 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,6.35 W/cm2,the 17.36 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,17.36 W/cm2,and the 56.25 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,56.25 W/cm2.The local field potential signals and behavioral correctness were recorded during the execution of T-maze in mice.(2)Modeling and simulation experiments:A neural network model of the prefrontal cortex in mice stimulated by transcranial magneto-acoustic-electrical stimulation was constructed to compare the structural connectivity characteristics of the neural network under different stimulation intensities. RESULTS AND CONCLUSION:Transcranial magneto-acoustic-electrical stimulation could effectively shorten the behavior learning time,improve the working memory ability of mice(P<0.05),and continue to stimulate the frontal lobe of mice after learning behavior.There was no significant difference in the accuracy of the T-maze behavioral experiment among the experimental groups(P>0.1).Analysis of local field potential signals in the frontal lobe of mice revealed that transcranial magneto-acoustic-electrical stimulation promoted energy enhancement of β and γ rhythms.As the stimulation intensity increased,there was an asynchronous decrease in β and γ rhythms.Through β-γ phase amplitude coupling,it was found that stimuli could enhance the neural network's ability to adapt to new information and task requirements.Modeling and simulation experiments found that stimulation could enhance the discharge level of the neural network,increase the long-term synaptic weight level,and decrease the short-term synaptic weight level only when the stimulation intensity was high.To conclude,there is a complex nonlinear relationship between different stimulus intensities and the functional structure of neural networks.This neural regulation technique may provide new possibilities for the treatment of related neurological diseases such as synaptic dysfunction and neural network abnormalities.
2.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
3.Primary regional disparities in clinical characteristics, treatments, and outcomes of a typically designed study of valvular heart disease at 46 tertiary hospitals in China: Insights from the China-VHD Study.
Xiangming HU ; Yunqing YE ; Zhe LI ; Qingrong LIU ; Zhenyan ZHAO ; Zheng ZHOU ; Weiwei WANG ; Zikai YU ; Haitong ZHANG ; Zhenya DUAN ; Bincheng WANG ; Bin ZHANG ; Junxing LV ; Shuai GUO ; Yanyan ZHAO ; Runlin GAO ; Haiyan XU ; Yongjian WU
Chinese Medical Journal 2025;138(8):937-946
BACKGROUND:
Valvular heart disease (VHD) has become increasingly common with the aging in China. This study aimed to evaluate regional differences in the clinical features, management strategies, and outcomes of patients with VHD across different regions in China.
METHODS:
Data were collected from the China-VHD Study. From April 2018 to June 2018, 12,347 patients who presented with moderate or severe native VHD with a median of 2 years of follow-up from 46 centers at certified tertiary hospitals across 31 provinces, autonomous regions, and municipalities in Chinese mainland were included in this study. According to the locations of the research centers, patients were divided into five regional groups: eastern, southern, western, northern, and central China. The clinical features of VHD patients were compared among the five geographical regions. The primary outcome was all-cause mortality or rehospitalization for heart failure. Kaplan-Meier survival analysis was used to compare the cumulative incidence rate.
RESULTS:
Among the enrolled patients (mean age, 61.96 years; 6877 [55.70%] male), multiple VHD was the most frequent type (4042, 32.74%), which was mainly found in eastern China, followed by isolated mitral regurgitation (3044, 24.65%), which was mainly found in northern China. The etiology of VHD varied significantly across different regions of China. The overall rate of valve interventions was 32.67% (4008/12,268), with the highest rate in southern China at 48.46% (205/423). In terms of procedure, the proportion of transcatheter valve intervention was relatively low compared to that of surgical treatment. Patients with VHD in western China had the highest incidence of all-cause mortality or rehospitalization for heart failure. Valve intervention significantly improved the outcome of patients with VHD in all five regions (all P <0.05).
CONCLUSIONS:
This study revealed that patients with VHD in China are characterized by significant geographic disparities in clinical features, treatment, and clinical outcomes. Targeted efforts are needed to improve the management and prognosis of patients with VHD in China according to differences in geographical characteristics.
REGISTRATION
ClinicalTrials.gov , NCT03484806.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
China/epidemiology*
;
Heart Valve Diseases/therapy*
;
Kaplan-Meier Estimate
;
Tertiary Care Centers
;
Treatment Outcome
4.Effect and mechanism of Shenmai Injection in regulating copper death in myocardial fibrosis in rats.
Si-Tong LIU ; Zhi-Yuan GUO ; Yue ZOU ; Zhi-An CHEN ; Shuai ZHANG ; Yan WANG ; Li-Ying WANG ; Yi-Hong ZHANG ; Zhi LIU
China Journal of Chinese Materia Medica 2025;50(6):1601-1609
Based on copper death, this study investigates the effect and mechanism of Shenmai Injection on isoproterenol(ISO)-induced myocardial fibrosis(MF) in rats. SPF-grade male SD rats were randomly divided into a normal group, model group, captopril(5 mg·kg~(-1)) positive control group, and Shenmai Injection low(6 mL·kg~(-1)), medium(9 mL·kg~(-1)), and high(12 mL·kg~(-1)) dose groups. Except for the normal group, the rats in the other groups were subcutaneously injected with ISO(5 mg·kg~(-1)) once a day for 10 consecutive days to establish an MF model. Starting from the second day after successful modeling, intraperitoneal injections of the respective treatments were administered for 28 consecutive days. Hematoxylin-eosin(HE) and Masson staining were used to observe pathological changes and fibrosis levels in the myocardial tissue. Colorimetry was employed to detect serum Cu~(2+) concentration in rats. The levels of inflammatory cytokines interleukin-6(IL-6), interleukin-1β(IL-1β), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), as well as mitochondrial energy metabolites adenosine triphosphate(ATP), adenosine diphosphate(ADP), and adenosine monophosphate(AMP) in serum were measured using enzyme-linked immunosorbent assay(ELISA). Western blot was performed to detect the expression of collagen Ⅰ(Col-Ⅰ), collagen Ⅲ(Col-Ⅲ), and copper death-related proteins dihydrolipoamide acetyltransferase(DLAT), ferredoxin 1(FDX1), lipoic acid synthetase(LIAS), and heat shock protein 70(HSP70) in myocardial tissue. Immunofluorescence was used to detect the expression of DLAT, FDX1, and HSP70, while immunohistochemistry was conducted to examine the expressions of DLAT, FDX1, LIAS, and HSP70. The results showed that, compared to the model group, the myocardial structure disorder and collagen fiber deposition in the drug treatment groups were significantly improved, the cardiac index level was reduced, serum Cu~(2+), IL-6, IL-1β, IL-18, TNF-α, ADP, and AMP levels were significantly decreased, ATP levels were significantly increased, and the expressions of Col-Ⅰ, Col-Ⅲ, and HSP70 proteins in myocardial tissue were significantly reduced, while the expressions of DLAT, FDX1, and LIAS proteins were significantly elevated. In conclusion, Shenmai Injection effectively alleviates myocardial structure disorder and interstitial collagen fiber deposition in ISO-induced MF rats, promotes copper excretion, and reduces copper death in the ISO-induced rat MF model.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Myocardium/metabolism*
;
Drug Combinations
;
Fibrosis/metabolism*
;
Copper/blood*
;
Cardiomyopathies/genetics*
;
Humans
5.Genetic Differences of Thalassemia Gene Among Ethnic Groups in Hechi, Guangxi.
Man-Ting SONG ; Feng-Yan WANG ; Dan LAN ; Gao CHEN ; Shuai WEI ; Li-Mang GUO
Journal of Experimental Hematology 2025;33(4):1098-1103
OBJECTIVE:
To retrospectively analyze the genetic differences of thalassemia gene mutations among ethnic groups in Hechi, Guangxi.
METHODS:
A total of 15 595 whole blood samples of residents of Hechi from January 1, 2020 to June 30, 2023 were screened for thalassemia, and the Gap-PCR method and RDB-PCR method were used to perform genetic testing on the positive samples. Gene sequencing was performed on the samples with positive screening results but negative genotyping results.
RESULTS:
Among the 15 595 samples, 10 501 cases were screened positively, and 8 506 cases were thalassemia gene carriers among the positive samples, with a positive coincidence rate of 81.00%. Among them, there were 5 374 cases of α-thalassemia, 2 531 cases of β-thalassemia, and 601 cases of α+β compound thalassemia. A total of 13 mutant types were detected in α-thalassemia, including --SEA (48.57%), -α 3.7 (31.31%), α CS (8.57%) and -α 4.2 (8.07%). A total of 17 mutant types were detected in β-thalassemia, mainly CD17 (48.27%) and CD41-42 (41.24%). The thalassemia gene carriers were mainly from the Zhuang (6 106 cases), Han (969 cases), Yao (793 cases), Mulam (275 cases), and Maonan (228 cases) ethnic groups. The comparison of constituent ratios within the above five ethnic groups demonstrated that there were differences in the proportions of -- SEA, -α 3.7, α CS , and -α 4.2 among the Zhuang, Han, and Yao ethnic groups (P < 0.005). The proportion of α CS in the Mulam ethnic group was not significantly different from -α 3.7 and -α 4.2. The proportions of -- SEA, -α3.7, and α CS in the Maonan ethnic group were not significantly different. There were no significant differences in the proportion of CD17 and CD41-42 among the Han, Yao, Mulam and Maonan ethnic groups. The proportion of --SEA was the highest in the Mulam ethnic group (56.68%), which was statistically different from 35.92% in the Maonan ethnic group. The proportion of -α 3.7 was the highest in the Zhuang ethnic group (33.25%), and the difference was statistically significant compared to the Mulam ethnic group which had the lowest proportion (18.72%). The proportion of α CS was the highest in the Maonan ethnic group (27.46%), and the differences were statistically significant compared with other ethnic groups. The proportions of CD17 in the Zhuang and Maonan ethnic groups (50.79%, 55.68%) were higher than those in the Han (39.12%), Yao (39.63%) and Mulam (30.00%), and the differences were statistically significant. There was no significant difference in the proportion of CD41-42 among the above five ethnic groups.
CONCLUSIONS
The mutation type and distribution differences of genes causing thalassemia among main ethnic groups in the minority inhabited areas of Hechi, Guangxi, show the characteristics of ethnic differentiation. The result is helpful to develop a special prevention and control plan for thalassemia in line with the population distribution characteristics, and provide reference for revealing the genetic background and geographical distribution of thalassemia in this area.
Humans
;
China
;
beta-Thalassemia/genetics*
;
Ethnicity/genetics*
;
alpha-Thalassemia/genetics*
;
Mutation
;
Genotype
;
Retrospective Studies
;
Asian People/genetics*
;
Thalassemia/genetics*
;
Male
6.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
7.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.
8.A novel loop-structure-based bispecific CAR that targets CD19 and CD22 with enhanced therapeutic efficacy against B-cell malignancies.
Lijun ZHAO ; Shuhong LI ; Xiaoyi WEI ; Xuexiu QI ; Qiaoru GUO ; Licai SHI ; Ji-Shuai ZHANG ; Jun LI ; Ze-Lin LIU ; Zhi GUO ; Hongyu ZHANG ; Jia FENG ; Yuanyuan SHI ; Suping ZHANG ; Yu J CAO
Protein & Cell 2025;16(3):227-231
9.Discussion on the Application Prospects and Challenges of Generative Artificial Intelligence Represented by ChatGPT in the Field of Hospital Management
Mingwang FANG ; Ling GUO ; Yingde HUANG ; Wei YUAN ; Yunyi GAO ; Yi ZHOU ; Yiyang ZHAO ; Bingxing SHUAI ; Xiangjun CHEN ; Weiyi ZHANG ; Dajiang LI
Journal of Medical Informatics 2024;45(10):18-21
Purpose/Significance To explore the changes,challenges,key application scenarios and future development directions of generative artificial intelligence(AI)represented by ChatGPT in the field of hospital management,and to provide references for the ap-plication of AI natural language processing(NLP)technology in the field of hospital management in China.Method/Process Through literature review and analysis,the changes and challenges brought about by the rapid development of generative AI in the field of hospital management are sorted out,its key application scenarios and future development directions in the field of hospital management are empha-sized and explored.Result/Conclusion AI has broad application prospects in the field of hospital management,and it should focus on exploring its practical application scenarios and strategic directions to provide reference and guidance for promoting the high-quality de-velopment of public hospitals.
10.Two cases of neonatal Legionella pneumonia
Yin-Zhi LIU ; Rong ZHANG ; Jing-Jing XIE ; Qiong GUO ; Cai-Xia ZHAN ; Meng-Yu CHEN ; Jun-Shuai LI ; Xiao-Ming PENG
Chinese Journal of Contemporary Pediatrics 2024;26(9):986-988
Patient 1,a 12-day-old female infant,presented with fever,cough,dyspnea,and elevated infection markers,requiring respiratory support.Metagenomic next-generation sequencing(mNGS)of blood and bronchoalveolar lavage fluid revealed Legionella pneumophila(LP),leading to diagnoses of LP pneumonia and LP sepsis.The patient was treated with erythromycin for 15 days and azithromycin for 5 days,resulting in recovery and discharge.Patient 2,an 11-day-old female infant,presented with dyspnea,fever,elevated infection markers,and multiple organ dysfunction,requiring mechanical ventilation.mNGS of blood and cerebrospinal fluid indicated LP,leading to diagnoses of LP pneumonia,LP sepsis,and LP intracranial infection.The patient was treated with erythromycin for 19 days and was discharged after recovery.Neonatal LP pneumonia lacks specific clinical symptoms,and azithromycin is the preferred antimicrobial agent.The use of mNGS can provide early and definitive diagnosis for severe neonatal pneumonia of unknown origin.

Result Analysis
Print
Save
E-mail