1.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
2.Essential tremor plus affects disease prognosis: A longitudinal study.
Runcheng HE ; Mingqiang LI ; Xun ZHOU ; Lanqing LIU ; Zhenhua LIU ; Qian XU ; Jifeng GUO ; Xinxiang YAN ; Chunyu WANG ; Hainan ZHANG ; Irene X Y WU ; Beisha TANG ; Sheng ZENG ; Qiying SUN
Chinese Medical Journal 2025;138(1):117-119
3.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry
4.Current situation of medicinal animal breeding and research progress in sustainable utilization of resources.
Cheng-Cai ZHANG ; Jia WANG ; Yu-Jie ZHOU ; Xiao-Yu DAI ; Xiu-Fu WAN ; Chuan-Zhi KANG ; De-Hua WU ; Jia-Hui SUN ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(16):4397-4406
Traditional Chinese medicine(TCM) is the pillar for the development of motherland medicine, and animal medicine has a long history of application in China, characterized by wide resources, strong activity, definite efficacy, and great benefits. It has significant potential and important status in the consumption market of raw materials of TCM. In the context of global climate change, farming system alterations, and low renewability, the depletion of wild medicinal animal resources has accelerated. Accordingly, the conservation and sustainable utilization of wild resources of animal medicinal materials has become a problem that garners increasing attention and urgently needs to be solved. This paper summarizes the current situation of domestic and foreign medicinal animal breeding and research progress in industrial application in recent years and points out the issues related to standardized breeding, germplasm selection and breeding, and quality evaluation standards for medicinal animals. Furthermore, this paper discusses standardized breeding, quality standards, resource protection and utilization, and the search for alternative resources for rare and endangered medicinal animals. It proposes that researchers should systematically carry out in-depth basic research on animal medicine, improve the breeding scale and level of medicinal animals, employ modern technology to enhance the quality standards of medicinal materials, and strengthen the research and development of alternative resources. This approach aims to effectively address the relationship between protection and utilization and make a significant contribution to the sustainable development of medicinal animal resources and the animal-based Chinese medicinal material industry.
Animals
;
Breeding
;
China
;
Medicine, Chinese Traditional
;
Conservation of Natural Resources
5.Development of intelligent equipment for rapid microbial detection of Atractylodis Macrocephalae Rhizoma decoction pieces based on measurement technology for traditional Chinese medicine manufacturing.
Yang LIU ; Wu-Zhen QI ; Yu-Tong WU ; Shan-Xi ZHU ; Xiao-Jun ZHAO ; Qia-Tong XIE ; Yu-Feng GUO ; Jing ZHAO ; Nan LI ; Shi-Jun WANG ; Qi-Hui SUN ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(16):4610-4618
Microbial detection and control of traditional Chinese medicine(TCM) decoction pieces are crucial for the quality control of TCM preparations. It is also a key area of research in the measurement technology and equipment development for TCM manufacturing. Guided by TCM manufacturing measurement methodologies, this study presented a design of a novel portable microbial detection device, using Atractylodis Macrocephalae Rhizoma decoction pieces as a demonstration. Immunomagnetic separation technology was employed for specific isolation and labeling of target microorganisms. Enzymatic signal amplification was utilized to convert weak biological signals into colorimetric signals, constructing an optical biosensor. A self-developed smartphone APP was further applied to analyze the colorimetric signals and quantify target concentrations. A portable and automated detection system based on Arduino microcontroller was developed to automatically perform target microbial separation/extraction, as well as mimetic enzyme labeling and catalytic reactions. The developed equipment specifically focuses on the rapid and quantitative microbial analysis of TCM active pharmaceutical ingredients, intermediates in TCM manufacturing, and final TCM products. Experimental results demonstrate that the equipment could detect Salmonella in samples within 2 h, with a detection limit as low as 5.1 × 10~3 CFU·mL~(-1). The equipment enables the rapid detection of microorganisms in TCM decoction pieces, providing a potential technical solution for on-site rapid screening of microbial contamination indicators in TCM. It has broad application prospects in measurement technology for TCM manufacturing and offers strong technical support for the modernization, industrialization, and intelligent development of TCM.
Drugs, Chinese Herbal/analysis*
;
Atractylodes/microbiology*
;
Rhizome/microbiology*
;
Biosensing Techniques/methods*
;
Medicine, Chinese Traditional
;
Colorimetry/instrumentation*
;
Quality Control
6.Ziyuglycoside II suppressed the progression of osteosarcoma by coordinating estrogen-related receptor gamma and p53 signaling pathway.
Hang DU ; Dongjin WU ; Tianyu ZHANG ; Ying ZHONG ; Kaiyi WU ; Xin GUO ; Lisong SHENG ; Nana HUANG ; Chunzheng GAO ; Rong SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):354-367
Osteosarcoma (OS) is the most prevalent primary malignant bone tumor affecting children and adolescents. Despite ongoing research efforts, the 5-year survival rate has remained stagnant for many years, highlighting the critical need for novel drug development to enhance current treatment protocols. Ziyuglycoside II (ZYG II), a triterpenoid saponin extracted from S. officinalis, has recently demonstrated antitumor properties. This study evaluates the antitumor effect of ZYG II on osteosarcoma and elucidates its mechanism of action through the co-regulation of p53 and estrogen-related receptor gamma (ESRRG), which inhibits disease progression. The research employs in vitro experiments using multiple established osteosarcoma cell lines, as well as in vivo studies utilizing a nude mouse model of orthotopic xenograft osteosarcoma. Additionally, ESRRG shRNA was used to construct stable ESRRG-reducing OS cell lines to investigate the molecular mechanism by which ZYG II exerts its anti-osteosarcoma effects through the co-regulation of ESRRG and p53. Results indicate that ZYG II administration led to decreased OS cell viability and reduced tumor volumes. Furthermore, cell cycles were arrested at the G0/G1 phase, while the proportion of apoptotic cells increased. Expression of p53, ESRRG, p21, Bax, Cleaved Caspase-9, and Cleaved Caspase-3 proteins increased, while expression of CDK4, Cyclin D1, and Bcl-2 proteins decreased. Multiple ZYG II and ESRRG docking patterns were simulated through molecular docking. Comparing the pharmacodynamic response of ZYG II to OS cell lines with reduced ESRRG and normal expression demonstrated that ZYG II inhibits osteosarcoma progression, induces cell cycle arrest, and promotes cell apoptosis through the coordination of p53 and ESRRG. In conclusion, ZYG II inhibits osteosarcoma progression, leads to cell cycle arrest, and promotes cell apoptosis through synergistic regulation of p53 and ESRRG.
Osteosarcoma/physiopathology*
;
Tumor Suppressor Protein p53/genetics*
;
Humans
;
Animals
;
Saponins/chemistry*
;
Bone Neoplasms/physiopathology*
;
Signal Transduction/drug effects*
;
Cell Line, Tumor
;
Mice, Nude
;
Mice
;
Apoptosis/drug effects*
;
Receptors, Estrogen/genetics*
;
Mice, Inbred BALB C
;
Female
;
Male
;
Xenograft Model Antitumor Assays
7.Research porgress on intergrating multimodal research models to study cardiotoxicity of air pollution
Tengyue ZHAO ; Jingjing GUO ; Bingjie WANG ; Ziying CHEN ; Sheng JIN ; Yuming WU
Journal of Environmental and Occupational Medicine 2025;42(11):1392-1399
The research on the cardiovascular toxicity of air pollutants is in urgent need of collaborative innovation across multiple models. This paper systematically reviewed the advantages and limitations of four principal research models of cardiotoxicity, including epidemiological model, mammalian model, zebrafish model, and in vitro model. Epidemiological models have been used to demonstrate a significant correlation between exposure to PM2.5 and both the incidence and mortality of cardiovascular diseases within populations; however, these models face challenges in establishing causal inferences and interpreting individual mechanisms. Mammalian models have been applied to elucidate the pathogenic mechanisms of PM2.5 at both the systemic and organ-specific levels, yet they encounter difficulties related to interspecies differences and throughput constraints. Zebrafish models, with their transparent embryos and observable development, offer a distinctive opportunity for high-throughput screening and mechanistic investigation of PM2.5-induced cardiac developmental toxicity. Nonetheless, their cardiac physiological structure diverges from that of mammals, limiting their capacity to accurately model chronic conditions such as coronary heart disease. In vitro models, particularly human heart organoids and chip technologies, have provided profound insights into the direct toxic mechanisms of PM2.5, including disruptions in calcium homeostasis, cellular senescence, and electrophysiological irregularities at the cellular and molecular levels. Despite these advancements, the complexity and developmental maturity of these models present challenges to their broader application. This paper proposed that the key to overcoming the bottlenecks of single models lies in the construction of an integrated evaluation system that combines “epidemiological studies, mammalian models, zebrafish models, and in vitro models”. By focusing on three aspects, namely model integration, technological convergence, and policy support, it is intended to collaboratively address issues such as standardization of multi-model data, simulation of complex exposure scenarios and susceptible life stages, and transformation pathways. This will provide innovative methodological support for the analysis of the cardiotoxic mechanisms of air pollutants, the assessment of environmental health impacts, and the formulation of precise prevention and control strategies.
8.Simultaneous content determination of seventeen constituents in Yangxue Ruanjian Capsules by UPLC-MS/MS
Yong-Ming LIU ; Shu-Sen LIU ; Yi-Zhe XIONG ; Xiang WANG ; Yu-Yun WU ; Jin LIU ; Ling-Yun PAN ; Guo-Qing DU ; Hong-Sheng ZHAN
Chinese Traditional Patent Medicine 2024;46(2):353-358
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of liquiritin apioside,alibiflorin,swertiamarin,methyl gallate,benzoylpaeoniflorin,sweroside,6′-O-β-D-glucosylgentiopicroside,isoliquiritigenin,loganic acid,liquiritigenin,gallic acid,paeoniflorin,oxypaeoniflorin,gentiopicroside,glycyrrhizic acid,isoliquiritoside and liquiritin in Yangxue Ruanjian Capsules.METHODS The analysis was performed on a 40℃thermostatic Waters BEH C18column(2.1 mm×100 mm,1.7 μm),with the mobile phase comprising of 2 mmol/L ammonium acetate(containing 0.1%formic acid)-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in negative ion scanning with multiple reaction monitoring mode.RESULTS Seventeen constituents showed good linear relationships within their own ranges(r>0.999 6),whose average recoveries were 91.33%-104.03%with the RSDs of 1.58%-3.50%.CONCLUSION This rapid,accurate and stable method can be used for the quality control of Yangxue Ruanjian Capsules.
9.Simultaneous content determination of ten constituents in Tianma Toufengling Capsules by QAMS
Xu-Sheng GUO ; Xue-Wei QIU ; Li LI ; Ai-Ying WU ; An-Zhen CHEN ; Hong-Bing LIU ; Jing-Guang LU
Chinese Traditional Patent Medicine 2024;46(2):359-364
AIM To establish a quantitative analysis of multi-components by single-marker(QAMS)method for the simultaneous content determination of gastrodin,parishin E,syringin,parishin B,parishin C,ferulic acid,parishin A,buddleoside,harpagoside and cinnamic acid in Tianma Toufengling Capsules.METHODS The analysis was performed on a 30℃thermostatic GL Science InertsilTM ODS-3 column(150 mm×4.6 mm,5 μm),with the mobile phase comprising of acetonitrile-0.1%phosphoric acid flowing at 1.0 mL/min in a gradient elution manner,and the detection wavelengths were set at 220,280 nm.Syringin was used as an internal standard to calculate the relative correction factors of the other nine constituents,after which the content determination was made.RESULTS Ten constituents showed good linear relationships within their own ranges(r≥0.999 7),whose average recoveries were 98.53%-102.22%with the RSDs of 1.26%-2.68%.The result obtained by QAMS approximated those obtained by external standard method.CONCLUSION This accurate and specific method can be used for the quality control of Tianma Toufengling Capsules.
10.Research on three-dimensional ordered porous carbon-based materials prepared from Acanthopanax senticosus traditional Chinese medicine residues and their drug loading performance
De-sheng WANG ; Jia-xin FAN ; Ri-qing CHENG ; Shi-kui WU ; Lai-bing WANG ; Jia-hao SHI ; Ting-ting CHEN ; Qin-fang HE ; Chang-jin XU ; Hui-qing GUO
Acta Pharmaceutica Sinica 2024;59(10):2857-2863
Three-dimensional ordered porous carbon materials exhibit potential application prospects as excellent drug supports in drug delivery systems due to their high specific surface area, tunable pore structure, and excellent biocompatibility. In this study, three-dimensional ordered porous carbon materials were prepared using

Result Analysis
Print
Save
E-mail