1.Comparison of bilateral implantation of extended depth-of-focus intraocular lens and mix-and-match implantation of extended depth-of-focus intraocular lens with a diffractive bifocal intraocular lens
Tong LI ; Zhuoya LI ; Rong GUO ; Xiaomin HU ; Hui ZHANG
International Eye Science 2025;25(3):337-343
AIM: To compare the clinical outcomes of extended depth-of-focus intraocular lenses(EDOF IOLs)using either micromonovision implantation or mixed implantation of EDOF and diffractive bifocal IOLs.METHODS: This retrospective clinical trial included 130 patients(260 eyes), who were divided into two groups. Group RR comprised 70 patients(140 eyes)bilaterally implanted with ZXR00 IOLs(Tecnis ZXR00, where one target was -0.5 D to -0.75 D and the other was 0 to -0.25 D). Group RM comprised 60 patients(120 eyes)unilaterally implanted with both ZXR00 and ZMB00 IOLs(Tecnis ZMB00, 0 to -0.25 D). Postoperative outcomes were compared after 3 mo, including visual acuity, defocus curves, stereoacuity, modulation transfer functions(MTFs), higher-order aberrations, and Visual Function-14(VF-14)questionnaire responses.RESULTS: Group RR had superior bilateral intermediate vision, while the group RM had superior bilateral near vision(both P<0.05). Group RM also exhibited superior MTFs and reduced higher-order aberrations(both P<0.05). Stereoacuity and VF-14 questionnaire results showed no statistically significant difference between groups(P>0.05).CONCLUSION: The implantation of micromonovision has significantly improved near vision. IOLs and their collocation can be customized according to individual patient needs to achieve precise treatment and provide cataract patients with high-quality vision.
2.Comparison of bilateral implantation of extended depth-of-focus intraocular lens and mix-and-match implantation of extended depth-of-focus intraocular lens with a diffractive bifocal intraocular lens
Tong LI ; Zhuoya LI ; Rong GUO ; Xiaomin HU ; Hui ZHANG
International Eye Science 2025;25(3):337-343
AIM: To compare the clinical outcomes of extended depth-of-focus intraocular lenses(EDOF IOLs)using either micromonovision implantation or mixed implantation of EDOF and diffractive bifocal IOLs.METHODS: This retrospective clinical trial included 130 patients(260 eyes), who were divided into two groups. Group RR comprised 70 patients(140 eyes)bilaterally implanted with ZXR00 IOLs(Tecnis ZXR00, where one target was -0.5 D to -0.75 D and the other was 0 to -0.25 D). Group RM comprised 60 patients(120 eyes)unilaterally implanted with both ZXR00 and ZMB00 IOLs(Tecnis ZMB00, 0 to -0.25 D). Postoperative outcomes were compared after 3 mo, including visual acuity, defocus curves, stereoacuity, modulation transfer functions(MTFs), higher-order aberrations, and Visual Function-14(VF-14)questionnaire responses.RESULTS: Group RR had superior bilateral intermediate vision, while the group RM had superior bilateral near vision(both P<0.05). Group RM also exhibited superior MTFs and reduced higher-order aberrations(both P<0.05). Stereoacuity and VF-14 questionnaire results showed no statistically significant difference between groups(P>0.05).CONCLUSION: The implantation of micromonovision has significantly improved near vision. IOLs and their collocation can be customized according to individual patient needs to achieve precise treatment and provide cataract patients with high-quality vision.
3.Zhenzhu Tiaozhi Capsules Reduce Renal Lipid Deposition and Inflammation in Mouse Model of Diabetic Kidney Disease via SCAP-SREBP-1c/NLRP3 Signaling Pathway
Tao ZHANG ; Jie TAO ; Yinghui ZHANG ; Yiqi YANG ; Xianglu RONG ; Jiao GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):114-121
ObjectiveTo investigate the protective effects and mechanisms of Zhenzhu Tiaozhi capsules on the kidneys in the mouse model of diabetic kidney disease. MethodsThirty male C57BL/6J mice were selected as experimental objects. The model of diabetic kidney disease was induced by intraperitoneal injection of streptozotocin (STZ) at 40 mg·kg-1 for 5 days combined with a high-fat diet (HFD). Fasting blood glucose (FBG) ≥ 11.1 mmol·L-1, increased urine volume, and continuous appearance of proteinuria indicated successful modeling. Mice were grouped as follows: Blank, model, low- and high-dose (0.98 and 1.96 g·kg-1, respectively) Zhenzhu Tiaozhi capsules, and losartan potassium (30 mg·kg-1), with six mice in each group. After 12 weeks of continuous gavage, urine and kidney specimens were collected, and the 24-h urinary protein and the urinary albumin-to-creatinine ratio (UACR) in mice were measured. Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining were performed for observation of histopathological changes in kidneys. Immunofluorescence assay was employed to detect the positive expression of the podocyte marker protein nephrin. Oil red O staining was used to detect renal lipid deposition. Enzyme linked immunosorbent assay was employed to measure the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the renal tissue. Western blot was employed to determine the expression levels of sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-1c (SREBP-1c), and NOD-like receptor protein 3 (NLRP3) in the renal tissue. ResultsCompared with the blank group, the model group showed increases in 24-h urinary protein and UACR (P<0.05), glomeruli exhibiting capsule adhesion, collagen fiber deposition, mesangial proliferation, and inflammatory cell infiltration, elevated levels of IL-1β, IL-6, and TNF-α (P<0.05), reduced positive expression of nephrin (P<0.05), increased lipid deposition (P<0.05), and up-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. Compared with the model group, the treatment with losartan potassium or high-dose Zhenzhu Tiaozhi capsules for 12 weeks decreased 24-h urinary protein and UACR (P<0.05), and the treatment with low-dose Zhenzhu Tiaozhi capsules for 12 weeks reduced the 24-h urinary protein (P<0.05). Pathological staining results revealed that kidney damage in mice from all treatment groups was alleviated, with reduced inflammatory infiltration, collagen fiber deposition, and mesangial proliferation, and increased positive expression of nephrin in the renal tissue (P<0.05). In addition, all the treatment groups showed reduced lipid droplets (P<0.05), lowered levels of IL-1β, IL-6, and TNF-α (P<0.05), and down-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. ConclusionZhenzhu Tiaozhi capsules can ameliorate kidney damage in the mouse model of diabetic kidney disease by inhibiting the activation of the SCAP-SREBP-1c/NLRP3 signaling pathway, which reduces renal lipid deposition and inflammation.
4.Zhenzhu Tiaozhi Capsules Reduce Renal Lipid Deposition and Inflammation in Mouse Model of Diabetic Kidney Disease via SCAP-SREBP-1c/NLRP3 Signaling Pathway
Tao ZHANG ; Jie TAO ; Yinghui ZHANG ; Yiqi YANG ; Xianglu RONG ; Jiao GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):114-121
ObjectiveTo investigate the protective effects and mechanisms of Zhenzhu Tiaozhi capsules on the kidneys in the mouse model of diabetic kidney disease. MethodsThirty male C57BL/6J mice were selected as experimental objects. The model of diabetic kidney disease was induced by intraperitoneal injection of streptozotocin (STZ) at 40 mg·kg-1 for 5 days combined with a high-fat diet (HFD). Fasting blood glucose (FBG) ≥ 11.1 mmol·L-1, increased urine volume, and continuous appearance of proteinuria indicated successful modeling. Mice were grouped as follows: Blank, model, low- and high-dose (0.98 and 1.96 g·kg-1, respectively) Zhenzhu Tiaozhi capsules, and losartan potassium (30 mg·kg-1), with six mice in each group. After 12 weeks of continuous gavage, urine and kidney specimens were collected, and the 24-h urinary protein and the urinary albumin-to-creatinine ratio (UACR) in mice were measured. Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining were performed for observation of histopathological changes in kidneys. Immunofluorescence assay was employed to detect the positive expression of the podocyte marker protein nephrin. Oil red O staining was used to detect renal lipid deposition. Enzyme linked immunosorbent assay was employed to measure the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the renal tissue. Western blot was employed to determine the expression levels of sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-1c (SREBP-1c), and NOD-like receptor protein 3 (NLRP3) in the renal tissue. ResultsCompared with the blank group, the model group showed increases in 24-h urinary protein and UACR (P<0.05), glomeruli exhibiting capsule adhesion, collagen fiber deposition, mesangial proliferation, and inflammatory cell infiltration, elevated levels of IL-1β, IL-6, and TNF-α (P<0.05), reduced positive expression of nephrin (P<0.05), increased lipid deposition (P<0.05), and up-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. Compared with the model group, the treatment with losartan potassium or high-dose Zhenzhu Tiaozhi capsules for 12 weeks decreased 24-h urinary protein and UACR (P<0.05), and the treatment with low-dose Zhenzhu Tiaozhi capsules for 12 weeks reduced the 24-h urinary protein (P<0.05). Pathological staining results revealed that kidney damage in mice from all treatment groups was alleviated, with reduced inflammatory infiltration, collagen fiber deposition, and mesangial proliferation, and increased positive expression of nephrin in the renal tissue (P<0.05). In addition, all the treatment groups showed reduced lipid droplets (P<0.05), lowered levels of IL-1β, IL-6, and TNF-α (P<0.05), and down-regulated expression of SCAP, SREBP-1c, and NLRP3 (P<0.05) in the renal tissue. ConclusionZhenzhu Tiaozhi capsules can ameliorate kidney damage in the mouse model of diabetic kidney disease by inhibiting the activation of the SCAP-SREBP-1c/NLRP3 signaling pathway, which reduces renal lipid deposition and inflammation.
5.Body Composition Profiles and Associated Factors in Adolescents UndergoingLong-term Regular Exercise
Yutong WANG ; Xiaoyuan GUO ; Hanze DU ; Hui PAN ; Wei WANG ; Mei ZHANG ; Bo BAN ; Ping LI ; Xinran ZHANG ; Qiuping ZHANG ; Hongshuang SUN ; Rong LI ; Shi CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):591-597
To investigate body composition and associated factors in adolescents undergoing long-term regular sports training. This prospective longitudinal cohort study employed convenience sampling to recruit adolescents receiving structured athletic training at Jining Sports Training Center in June 2023. Baseline measurements included height, weight, body mass index (BMI), blood pressure, heart rate, waist circumference, and hip circumference. Questionnaires assessed sleep duration, screen time, and household income. Follow-up measurements in June 2024 repeated these assessments while adding bioelectrical impedance analysis for body composition (lean mass, skeletal muscle mass, fat mass, and body fat percentage). Linear regression models examined associations between training type (direct-contact vs. non-contact sports) and follow-up body fat percentage, BMI, and waist circumference as dependent variables, adjusting for covariates. The study included 110 adolescents (39 female, 71 male) with median age 13.21 years (IQR: 12.46-14.33). Participants comprised 65 direct-contact and 45 non-contact athletes. Baseline prevalence rates were 27.27% for overweight/obesity, 24.55% for elevated waist circumference, and 16.36% for elevated blood pressure. At follow-up, corresponding rates were 24.55%, 26.36%, and 13.64% respectively. The elevated blood pressure subgroup showed significantly higher waist circumference ( Despite regular athletic training, substantial proportions of adolescents exhibited overweight/obesity, abdominal obesity, and elevated blood pressure, warranting clinical attention. Training modality appears to influence body composition changes, with direct-contact sports associated with more favorable adiposity-related outcomes.
6.Guideline for the workflow of clinical comprehensive evaluation of drugs
Zhengxiang LI ; Rong DUAN ; Luwen SHI ; Jinhui TIAN ; Xiaocong ZUO ; Yu ZHANG ; Lingli ZHANG ; Junhua ZHANG ; Hualin ZHENG ; Rongsheng ZHAO ; Wudong GUO ; Liyan MIAO ; Suodi ZHAI
China Pharmacy 2025;36(19):2353-2365
OBJECTIVE To standardize the main processes and related technical links of the clinical comprehensive evaluation of drugs, and provide guidance and reference for improving the quality of comprehensive evaluation evidence and its transformation and application value. METHODS The construction of Guideline for the Workflow of Clinical Comprehensive Evaluation of Drugs was based on the standard guideline formulation method of the World Health Organization (WHO), strictly followed the latest definition of guidelines by the Institute of Medicine of the National Academy of Sciences of the United States, and conformed to the six major areas of the Guideline Research and Evaluation Tool Ⅱ. Delphi method was adopted to construct the research questions; research evidence was established by applying the research methods of evidence-based medicine. The evidence quality classification system of the Chinese Evidence-Based Medicine Center was adopted for evidence classification and evaluation. The recommendation strength was determined by the recommendation strength classification standard formulated by the Oxford University Evidence-Based Medicine Center, and the recommendation opinions were formed through the expert consensus method. RESULTS & CONCLUSIONS The Guideline for the Workflow of Clinical Comprehensive Evaluation of Drugs covers 4 major categories of research questions, including topic selection, evaluation implementation, evidence evaluation, and application and transformation of results. The formulation of this guideline has standardized the technical links of the entire process of clinical comprehensive evaluation of drugs, which can effectively guide the high-quality and high-efficient development of this work, enhance the standardized output and transformation application value of evaluation evidence, and provide high-quality evidence support for the scientific decision-making of health and the rationalization of clinical medication.
7.Effects of exosomes secreted by induced pluripotent stem cells on keratinocyte proliferation and migration
Rong-Rong ZHANG ; Xiao-Ling GUO ; Guang-Hui ZHU
The Chinese Journal of Clinical Pharmacology 2024;40(10):1438-1442
Objective To explore the role of exosomes secreted by induced pluripotent stem cells(iPSC)in promoting the proliferation,invasion and migration of keratinocytes,thereby facilitating wound healing.Methods Extract iPSC-Exos and identify them through transmission electron microscopy,nanoparticle tracking analysis technology,and Western blotting.Purified iPSC-Exos labeled with PKH26 were added to keratinocytes(HaCaT)for the determination of keratinocyte uptake of exosomes.The optimal working concentration of exosomes was assessed using cell counting kit-8(CCK-8),and cells were divided into control group(cell scratch),and experimental group(cell scratch followed by addition of exosomes at the optimal working concentration).Proliferation,migration,and invasion abilities of cells in each group were evaluated using CCK-8,5-ethynyl-2'-deoxyuridine(EdU),scratch assay,and Transwell assay.Results iPSC-Exos exhibit a membranous vesicular structure with a round or elliptical shape,and their diameter is(120.00±25.00)nm.The expression of characteristic surface markers CD9,CD63,and CD81 on iPSC-Exos is positive in the experimental group,while being negative in the control group.HaCaT cells are capable of internalizing iPSC-Exos.After 24 hours of intervention,the scratch healing rates in the control and experimental groups are(25.70±1.07)%and(71.60±12.76)%,respectively.The Transwell invasion cell numbers are(86.33±10.79)and(166.33±24.13)in the control and experimental groups,and the EdU-positive proportions are(45.30±3.17)%and(78.10±6.29)%,respectively.The above indicators in the experimental group show statistically significant differences compared to the control group(all P<0.05).Conclusion The exosomes secreted by pluripotent stem cells can promote the proliferation,migration,and invasion of keratinocytes,thereby indirectly promoting wound healing.
8.Research status of sodium-glucose co-transporter 2 inhibitors in the treatment of type 2 diabetes mellitus with heart failure with preserved ejection fraction
Ming-Yan LIU ; Bing-Qi ZHANG ; Hu-Hu LI ; Nai-Ru YUN ; Si-Miao FAN ; Rong-Rong YANG ; Rui-Ying GUO ; Yong-Na DAI
The Chinese Journal of Clinical Pharmacology 2024;40(13):1977-1981
Sodium-glucose co-transporter protein 2 inhibitor(SGLT2i)has steadily demonstrated benefits in the treatment of type 2 diabetes complicated with cardiovascular diseases based on evidence-based medicine,but its precise mechanism is yet unknown.We identified type 2 diabetes patients with HFpEF by searching PubMed,Web of Science,China knowledge network(CNKI),and other databases.We then summarized the pathological mechanism of HFpEF caused by type 2 diabetes.At the same time,to link to evidence-based medical,we explored the future of SGLT2i in clinical application.
9.Short-term results of sleeve wrapping technique using remnant aortic wall in modified Bentall procedure
MENG Maolong ; Yao WANG ; Pingfan LU ; Huapeng LI ; Rong REN ; Wen ZHANG ; Fengjie CHEN ; Xianmian ZHUANG ; Xiang WANG ; Gang LI ; Hongwei GUO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(02):283-287
Objective To evaluate the short-term results of sleeve wrapping technique using remnant aortic wall in modified Bentall procedure. Methods The patients undergoing modified Bentall procedure with the remnant aortic wall as a sleeve to cover the sewing area of composite valved graft and the aortic annulus for proximal hemostasis between March 2021 and March 2022 in Shenzhen Fuwai Hospital were enrolled. Short-term results were assessed by cardiopulmonary bypass time, aortic clamping time, mechanical ventilation time, ICU stay, postoperative hospital stay, effusion drainage on the first postoperative day, left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDD), and follow-up results. Results A total of 14 patients were collected, including 12 males and 2 females, with a mean age of 55.33±10.57 years. There was no postoperative or follow-up death. Cardiopulmonary bypass time was 147.90±21.29 min, aortic clamping time was 115.70±15.23 min, mechanical ventilation time was 19.42±8.98 h, ICU stay was 99.08±49.42 h, and postoperative hospital stay was 16.33±2.74 d. Thoracic drainage volume was 333.33±91.98 mL on the first postoperative day. Only 2 patients required blood transfusion (4.5 U and 2 U, respectively). During the follow-up of 6.17±3.69 months, there was no death, no aortic or valve-related complications. There was statistical difference in the LVEDD between preoperation and before discharge after surgery (P<0.001), and between half a year after surgery and before discharge after surgery (P<0.001). There was a little decrease of LVEF before discharge after surgery compared with preoperative LVEF, but there was no statistical difference (P=0.219). There was no statistical difference in the LVEF half a year after operation compared with that before operation (P=1.000). Conclusion Sleeve wrapping technique using remnant aortic wall in modified Bentall procedure has good short-term results. This modification may be a simple, effective way in controlling proximal bleeding.
10.Early Primate Embryo Development Meets Single-cell Multi-omics
Zhi-Hui PAN ; Rong-Rong GUO ; You-Yue ZHANG ; Tao TAN
Progress in Biochemistry and Biophysics 2024;51(9):2000-2015
Given the constraints imposed by the “14-day ethics” rule, numerous critical events occurring between the second and fourth weeks of embryonic development remain poorly understood. This underscores the necessity of a detailed understanding of embryonic development and regulation during this period, which is indispensable for preventing pregnancy failure, treating birth defects, and promoting human reproductive health.Rodents, characterized by their small size, rapid growth, strong reproductive capacity, and fully sequenced genomes, are widely used as crucial models for studying embryonic development. However, the substantial physiological differences between rodents and primates due to evolutionary divergence make it challenging to directly apply findings from rodent studies to primates. Besides, primates, our closest relatives in terms of evolutionary phylogenetics and physiological characteristics, share more than 95% genetic homology with humans, underscoring the urgent need for primate research. Furthermore, early-stage embryonic cells are both scarce and diverse, making their regulatory mechanisms and developmental pathways typically elucidated through single-cell sequencing. For instance, three significant articles published in Science in 2018 mapped the complete atlas of organ and tissue development from fertilization and captured dynamic gene expression profiles in zebrafish and frogs through single-cell transcriptomics. Unfortunately, relying solely on single-cell omics analysis falls short in effectively and comprehensively deciphering the intricate cellular network information. Single-cell multi-omics empower researchers to systematically decode cell heterogeneity and developmental trajectories at the individual cell level by combining transcriptomics, epigenomics, proteomics, and metabolomics analyses. These emerging technologies play a significant role in life sciences, enabling the elucidation of critical early primate embryonic development events from a multi-dimensional perspective, including zygotic genome activation (ZGA), X-chromosome dosage compensation, origins of primordial germ cells (PGCs), mechanisms of cell fate determination, and pivotal events in gastrulation and early organogenesis.This article chronicles the advancement of pivotal technologies, from single-cell histology to multi-omics, beginning with the single-cell transcriptome and culminating in a comprehensive analysis according to the central dogma of molecular biology. It highlights the transition from a singular to a holistic perspective in cellular analysis and reviews the application of multi-omics techniques in unveiling early primate embryonic development. Finally, it delves into the application of multi-omics technologies in enhancing our understanding of early primate embryonic development and explores future possibilities, directions, and challenges in this rapidly evolving field. In doing so, it emphasizes the critical role of interdisciplinary approaches, combining insights from genetics, molecular biology, and bioinformatics to foster innovations in reproductive medicine and developmental biology. The integration of such technologies offers the promise of breakthroughs in understanding complex biological processes, potentially leading to novel therapeutic strategies and advancements in reproductive health and medicine.

Result Analysis
Print
Save
E-mail