1.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.A multicenter study on respiratory pathogen detection with Mycoplasma pneumoniae pneumonia in children
Xiaoyan DONG ; Yingxue ZOU ; Fangfang LYU ; Wenhao YANG ; Hailin ZHANG ; Yanhua NIU ; Haojie WANG ; Run GUO ; Xu WANG ; Li LI ; Zihao LIN ; Li LUO ; Danli LU ; Quan LU ; Hanmin LIU ; Lina CHEN
Chinese Journal of Pediatrics 2024;62(4):310-316
Objective:To analyze the status of respiratory pathogen detection and the clinical features in children with Mycoplasma pneumoniae pneumonia (MPP). Methods:A prospective, multicenter study was conducted to collect clinical data, including medical history, laboratory examinations and multiplex PCR tests of children diagnosed with MPP from 4 hospitals in China between November 15 th and December 20 th, 2023. The multiplex PCR results and clinical characteristics of MPP children in different regions were analyzed. The children were divided into severe and mild groups according to the severity of the disease. Patients in the severe group were further divided into Mycoplasma pneumoniae (MP) alone and Multi-pathogen co-detection groups based on whether other pathogens were detected besides MP, to analyze the influence of respiratory pathogen co-detection rate on the severity of the disease. Mann-Whitney rank sum test and Chi-square test were used to compare data between independent groups. Results:A total of 298 children, 136 males and 162 females, were enrolled in this study, including 204 children in the severe group with an onset age of 7.0 (6.0, 8.0) years, and 94 children in the mild group with an onset age of 6.5 (4.0, 7.8) years. The level of C-reactive protein, D-dimer, lactic dehydrogenase (LDH) were significantly higher (10.0 (5.0, 18.0) vs. 5.0 (5.0, 7.5) mg/L, 0.6 (0.4, 1.1) vs. 0.5 (0.3, 0.6) mg/L, 337 (286, 431) vs. 314 (271, 393) U/L, Z=2.02, 2.50, 3.05, all P<0.05), and the length of hospitalization was significantly longer in the severe group compared with those in mild group (6.0 (6.0, 7.0) vs. 5.0 (4.0, 6.0) d, Z=4.37, P<0.05). The time from onset to admission in severe MPP children was significantly shorter than that in mild MPP children (6.0 (5.0, 9.5) vs. 9.0 (7.0, 13.0) d, Z=2.23, P=0.026). All patients completed the multiplex PCR test, with 142 cases (47.7%) MPP children detected with 21 pathogens including adenovirus 25 cases (8.4%), human coronavirus 23 cases (7.7%), rhinovirus 21 cases (7.0%), Streptococcus pneumoniae 21 cases (7.0%), influenza A virus 18 cases (6.0%). The pathogens with the highest detection rates in Tianjin, Shanghai, Wenzhou and Chengdu were Staphylococcus aureus at 10.7% (8/75), adenovirus at 13.0% (10/77), adenovirus at 15.3% (9/59), and both rhinovirus and Haemophilus influenzae at 11.5% (10/87) each. The multi-pathogen co-detection rate in severe MPP children was significantly higher than that in mild MPP group (52.9% (108/204) vs. 36.2% (34/94), χ2=10.62, P=0.005). Among severe MPP children, there are 89 cases in the multi-pathogen co-detection group and 73 cases in the simple MPP group. The levels of LDH, D-dimer and neutrophil counts in the multi-pathogen co-detection group were significantly higher than those in the simple MPP group (348 (284, 422) vs. 307 (270, 358) U/L, 0.8 (0.5, 1.5) vs. 0.6 (0.4, 1.0) mg/L, 4.99 (3.66, 6.89)×10 9vs. 4.06 (2.91, 5.65)×10 9/L, Z=5.17, 4.99, 6.11, all P<0.05). Conclusions:The co-detection rate of respiratory pathogens, LDH and D-dimer in children with severe MPP were higher than those with mild MPP. Among severe MPP children the stress response of children in co-detection group was more serious than that of children with simple MPP.
5.Hospitalization costs of pediatric community-acquired pneumonia in Shanghai.
Ying Zi YE ; Yong Hao GUI ; Quan LU ; Jian Guo HONG ; Rui FENG ; Bing SHEN ; Yue Jie ZHANG ; Xiao Yan DONG ; Ling SU ; Xiao Qing WANG ; Jia Yu WANG ; Dan Ping GU ; Hong XU ; Guo Ying HUANG ; Song Xuan YU ; Xiao Bo ZHANG
Chinese Journal of Pediatrics 2023;61(2):146-153
Objective: To investigate the epidemiology and hospitalization costs of pediatric community-acquired pneumonia (CAP) in Shanghai. Methods: A retrospective case summary was conducted on 63 614 hospitalized children with CAP in 59 public hospitals in Shanghai from January 2018 to December 2020. These children's medical records, including their basic information, diagnosis, procedures, and costs, were extracted. According to the medical institutions they were admitted, the patients were divided into the children's hospital group, the tertiary general hospital group and the secondary hospital group; according to the age, they were divided into <1 year old group, 1-<3 years old group, 3-<6 years old group, 6-<12 years old group and 12-18 years old group; according to the CAP severity, they were divided into severe pneumonia group and non-severe pneumonia group; according to whether an operation was conducted, the patients were divided into the operation group and the non-operation group. The epidemiological characteristics and hospitalization costs were compared among the groups. The χ2 test or Wilcoxon rank sum test was used for the comparisons between two groups as appropriate, and the Kruskal-Wallis H test was conducted for comparisons among multiple groups. Results: A total of 63 614 hospitalized children with CAP were enrolled, including 34 243 males and 29 371 females. Their visiting age was 4 (2, 6) years. The length of stay was 6 (5, 8) days. There were 17 974 cases(28.3%) in the secondary hospital group, 35 331 cases (55.5%) in the tertiary general hospital group and 10 309 cases (16.2%) in the children's hospital group. Compared with the hospitalizations cases in 2018 (27 943), the cases in 2019 (29 009) increased by 3.8% (1 066/27 943), while sharply declined by 76.2% (21 281/27 943) in 2020 (6 662). There were significant differences in the proportion of patients from other provinces and severe pneumonia cases, and the hospitalization costs among the children's hospital, secondary hospital and tertiary general hospital (7 146 cases(69.3%) vs. 2 202 cases (12.3%) vs. 9 598 cases (27.2%), 6 929 cases (67.2%) vs. 2 270 cases (12.6%) vs. 9 397 cases (26.6%), 8 304 (6 261, 11 219) vs. 1 882 (1 304, 2 796) vs. 3 195 (2 364, 4 352) CNY, χ2=10 462.50, 9 702.26, 28 037.23, all P<0.001). The annual total hospitalization costs of pediatric CAP from 2018 to 2020 were 110 million CNY, 130 million CNY and 40 million CNY, respectively. And the cost for each hospitalization increased year by year, which was 2 940 (1 939, 4 438), 3 215 (2 126, 5 011) and 3 673 (2 274, 6 975) CNY, respectively. There were also significant differences in the hospitalization expenses in the different age groups of <1 year old, 1-<3 years old, 3-<6 years old, 6-<12 years old and 12-18 years old (5 941 (2 787, 9 247) vs. 2 793 (1 803, 4 336) vs. 3 013 (2 070, 4 329) vs. 3 473 (2 400, 5 097) vs. 4 290 (2 837, 7 314) CNY, χ2=3 462.39, P<0.001). The hospitalization cost of severe pneumonia was significantly higher than that of non-severe cases (5 076 (3 250, 8 364) vs. 2 685 (1 780, 3 843) CNY, Z=109.77, P<0.001). The cost of patients who received operation was significantly higher than that of whom did not (10 040 (4 583, 14 308) vs. 3 083 (2 025, 4 747) CNY, Z=44.46, P<0.001). Conclusions: The number of children hospitalized with CAP in Shanghai decreased significantly in 2020 was significantly lower than that in 2018 and 2019.The proportion of patients from other provinces and with severe pneumonia are mainly admitted in children's hospitals. Hospitalization costs are higher in children's hospitals, and also for children younger than 1 year old, severe cases and patients undergoing operations.
Infant
;
Female
;
Male
;
Humans
;
Child
;
Retrospective Studies
;
China/epidemiology*
;
Hospitalization
;
Community-Acquired Infections/therapy*
;
Hospitals, Pediatric
;
Pneumonia/therapy*
6.Exploration and example interpretation of real-world herbal prescription classification based on similarity matching algorithm.
Guo-Zhen ZHAO ; Hai-Tian LU ; Shi-Yan YAN ; Yu-Hong GUO ; Hao-Ran YE ; Li JIANG ; Yao-Fu ZHANG ; Jing HU ; Shi-Qi GUO ; Yuan DU ; Fang-Yu LIU ; Bo LI ; Qing-Quan LIU
China Journal of Chinese Materia Medica 2023;48(4):1132-1136
In observational studies, herbal prescriptions are usually studied in the form of "similar prescriptions". At present, the classification of prescriptions is mainly based on clinical experience judgment, but there are some problems in manual judgment, such as lack of unified criteria, labor consumption, and difficulty in verification. In the construction of a database of integrated traditional Chinese and western medicine for the treatment of coronavirus disease 2019(COVID-19), our research group tried to classify real-world herbal prescriptions using a similarity matching algorithm. The main steps include 78 target prescriptions are determined in advance; four levels of importance labeling shall be carried out for the drugs of each target prescription; the combination, format conversion, and standardization of drug names of the prescriptions to be identified in the herbal medicine database; calculate the similarity between the prescriptions to be identified and each target prescription one by one; prescription discrimination is performed based on the preset criteria; remove the name of the prescriptions with "large prescriptions cover the small". Through the similarity matching algorithm, 87.49% of the real prescriptions in the herbal medicine database of this study can be identified, which preliminarily proves that this method can complete the classification of herbal prescriptions. However, this method does not consider the influence of herbal dosage on the results, and there is no recognized standard for the weight of drug importance and criteria, so there are some limitations, which need to be further explored and improved in future research.
Humans
;
COVID-19
;
Algorithms
;
Databases, Factual
;
Prescriptions
;
Plant Extracts
7.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
8.The clinical value of serum GPC3 level in predicting recurrence of patients with primary hepatocellular carcinoma.
Pei Ru ZHANG ; Xiao Lu MA ; Lin GUO ; Ren Quan LU
Chinese Journal of Preventive Medicine 2023;57(6):885-890
Objective: To investigate the clinical value of serum glypican-3 (GPC3) detection in predicting recurrence of primary hepatocellular carcinoma (HCC). Methods: Through univariate and multivariate logistic regression analysis, the patients pathologically diagnosed with HCC in our hospital from March 2019 to January 2021 were enrolled as the experimental group (n=113), and patients with follow-up time longer than 6 months were included in the prognosis group(n=64). At the same time,20 healthy individuals and 20 individuals with benign liver disease from the physical examination center were enrolled by simple random sampling as control group (n=40). The serum GPC3 and alpha-fetoprotein (AFP) levels were respectively detected by ELISA and chemiluminescence. Then, the study explored the influential factors of the recurrence in HCC patients and constructed the HCC-GPC3 recurrence predicting model by logistic regression. Results: In the research, the sensitivity of GPC3 for the diagnosis of HCC was 61.95% (70/113) and AFP was 52.21% (59/113), meanwhile, the specificity of GPC3 could reach 87.50% (35/40) and AFP was 90.00% (36/40),respectively; The serum GPC3 levels of HCC patients with progressive stage, tumor size≥3 cm, vascular cancer thrombosis and portal venous thromboembolism were significantly higher than that of HCC patients with early stage, tumor size<3 cm, vascular cancer thrombosis and portal venous thromboembolism (Z=2.677, 2.848, 2.995, 2.252, P<0.05), independent of different ages, presence or absence of ascites, peritoneal metastasis, cirrhosis, intrahepatic metastasis (Z=-1.535, 1.011, 0.963, 0.394, 1.510, P>0.05), respectively. Univariate analysis showed that there were no statistically significant differences between the recurrence group and the non-recurrence group in terms of different age, tumor size, presence or absence of vascular cancer thrombosis, ascites, peritoneal metastasis, cirrhosis and AFP levels (χ2=2.012, 0.119, 2.363, 1.041, 0.318, 0.360, Z=0.748, P>0.05); The ratio of those with the progressive stage, portal venous thromboembolism and intrahepatic metastasis and GPC3 levels were all higher in the recurrence group than in the non-recurrence group (χ2=4.338, 11.90, 4.338, Z=2.805, P<0.05).Including the above risk factors in the logistic regression model, the logistic regression analysis showed that the stage, the presence of portal venous thromboembolism,intrahepatic metastasis and GPC3 levels were correlated with the prognosis recurrence of HCC patients (Wald χ2 =4.421, 5.681, 4.995, 4.319, P<0.05), and the HCC-GPC3 recurrence model was obtained as: OcScore=-2.858+1.563×[stage]+1.664×[intrahepatic metastasis]+2.942×[ portal venous thromboembolism]+0.776×[GPC3]. According to the receiver operating characteristic curve(ROC), the area under the curve(AUC)of the HCC-GPC3 prognostic model was 0.862, which was better than that of GPC3 alone (AUC=0.704). The cut-off value of model SCORE was 0.699 (the cut-off value of GPC3 was 0.257 mg/L), furthermore, the total sensitivity and specificity of model were 83.3% and 82.4%, which were better than those of GPC3(60.0% and 79.4%).Kaplan-Meier showed that the median PFS was significantly shorter in HCC patients with high GPC3 levels (≥0.257 mg/L) and high values of the model SCORE (≥0.700) (χ2=12.73, 28.16, P<0.05). Conclusion: Besides diagnosing of HCC, GPC3 can may be an independent risk indicator for the recurrence of HCC and can more efficiently predicting the recurrence of HCC patients when combined with the stage, the presence or absence of intrahepatic metastasis and portal venous thromboembolism.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/diagnosis*
;
alpha-Fetoproteins/analysis*
;
Biomarkers, Tumor
;
Glypicans
;
Ascites
;
Venous Thromboembolism
;
Peritoneal Neoplasms
;
Liver Cirrhosis
9.Incidence and prognosis of olfactory and gustatory dysfunctions related to infection of SARS-CoV-2 Omicron strain: a national multi-center survey of 35 566 population.
Meng Fan LIU ; Rui Xia MA ; Xian Bao CAO ; Hua ZHANG ; Shui Hong ZHOU ; Wei Hong JIANG ; Yan JIANG ; Jing Wu SUN ; Qin Tai YANG ; Xue Zhong LI ; Ya Nan SUN ; Li SHI ; Min WANG ; Xi Cheng SONG ; Fu Quan CHEN ; Xiao Shu ZHANG ; Hong Quan WEI ; Shao Qing YU ; Dong Dong ZHU ; Luo BA ; Zhi Wei CAO ; Xu Ping XIAO ; Xin WEI ; Zhi Hong LIN ; Feng Hong CHEN ; Chun Guang SHAN ; Guang Ke WANG ; Jing YE ; Shen Hong QU ; Chang Qing ZHAO ; Zhen Lin WANG ; Hua Bin LI ; Feng LIU ; Xiao Bo CUI ; Sheng Nan YE ; Zheng LIU ; Yu XU ; Xiao CAI ; Wei HANG ; Ru Xin ZHANG ; Yu Lin ZHAO ; Guo Dong YU ; Guang Gang SHI ; Mei Ping LU ; Yang SHEN ; Yu Tong ZHAO ; Jia Hong PEI ; Shao Bing XIE ; Long Gang YU ; Ye Hai LIU ; Shao wei GU ; Yu Cheng YANG ; Lei CHENG ; Jian Feng LIU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(6):579-588
Objective: This cross-sectional investigation aimed to determine the incidence, clinical characteristics, prognosis, and related risk factors of olfactory and gustatory dysfunctions related to infection with the SARS-CoV-2 Omicron strain in mainland China. Methods: Data of patients with SARS-CoV-2 from December 28, 2022, to February 21, 2023, were collected through online and offline questionnaires from 45 tertiary hospitals and one center for disease control and prevention in mainland China. The questionnaire included demographic information, previous health history, smoking and alcohol drinking, SARS-CoV-2 vaccination, olfactory and gustatory function before and after infection, other symptoms after infection, as well as the duration and improvement of olfactory and gustatory dysfunction. The self-reported olfactory and gustatory functions of patients were evaluated using the Olfactory VAS scale and Gustatory VAS scale. Results: A total of 35 566 valid questionnaires were obtained, revealing a high incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain (67.75%). Females(χ2=367.013, P<0.001) and young people(χ2=120.210, P<0.001) were more likely to develop these dysfunctions. Gender(OR=1.564, 95%CI: 1.487-1.645), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), oral health status (OR=0.881, 95%CI: 0.839-0.926), smoking history (OR=1.152, 95%CI=1.080-1.229), and drinking history (OR=0.854, 95%CI: 0.785-0.928) were correlated with the occurrence of olfactory and taste dysfunctions related to SARS-CoV-2(above P<0.001). 44.62% (4 391/9 840) of the patients who had not recovered their sense of smell and taste also suffered from nasal congestion, runny nose, and 32.62% (3 210/9 840) suffered from dry mouth and sore throat. The improvement of olfactory and taste functions was correlated with the persistence of accompanying symptoms(χ2=10.873, P=0.001). The average score of olfactory and taste VAS scale was 8.41 and 8.51 respectively before SARS-CoV-2 infection, but decreased to3.69 and 4.29 respectively after SARS-CoV-2 infection, and recovered to 5.83and 6.55 respectively at the time of the survey. The median duration of olfactory and gustatory dysfunctions was 15 days and 12 days, respectively, with 0.5% (121/24 096) of patients experiencing these dysfunctions for more than 28 days. The overall self-reported improvement rate of smell and taste dysfunctions was 59.16% (14 256/24 096). Gender(OR=0.893, 95%CI: 0.839-0.951), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), history of head and facial trauma(OR=1.180, 95%CI: 1.036-1.344, P=0.013), nose (OR=1.104, 95%CI: 1.042-1.171, P=0.001) and oral (OR=1.162, 95%CI: 1.096-1.233) health status, smoking history(OR=0.765, 95%CI: 0.709-0.825), and the persistence of accompanying symptoms (OR=0.359, 95%CI: 0.332-0.388) were correlated with the recovery of olfactory and taste dysfunctions related to SARS-CoV-2 (above P<0.001 except for the indicated values). Conclusion: The incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain is high in mainland China, with females and young people more likely to develop these dysfunctions. Active and effective intervention measures may be required for cases that persist for a long time. The recovery of olfactory and taste functions is influenced by several factors, including gender, SARS-CoV-2 vaccination status, history of head and facial trauma, nasal and oral health status, smoking history, and persistence of accompanying symptoms.
Female
;
Humans
;
Adolescent
;
SARS-CoV-2
;
Smell
;
COVID-19/complications*
;
Cross-Sectional Studies
;
COVID-19 Vaccines
;
Incidence
;
Olfaction Disorders/etiology*
;
Taste Disorders/etiology*
;
Prognosis
10.2023 China Guidelines for Lipid Management.
Jian-Jun LI ; Shui-Ping ZHAO ; Dong ZHAO ; Guo-Ping LU ; Dao-Quan PENG ; Jing LIU ; Zhen-Yue CHEN ; Yuan-Lin GUO ; Na-Qiong WU ; Sheng-Kai YAN ; Zeng-Wu WANG ; Run-Lin GAO
Journal of Geriatric Cardiology 2023;20(9):621-663
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death among urban and rural residents in China, and elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for ASCVD. Considering the increasing burden of ASCVD, lipid management is of the utmost importance. In recent years, research on blood lipids has made breakthroughs around the world, hence a revision of China guidelines for lipid management is imperative, especially since the target lipid levels in the general population vary in respect to the risk of ASCVD. The level of LDL-C, which can be regarded as appropriate in a population without frisk factors, can be considered abnormal in people at high risk of developing ASCVD. As a result, the "Guidelines for the prevention and treatment of dyslipidemia" were adapted into the "China Guidelines for Lipid Management" (henceforth referred to as the new guidelines) by an Experts' committee after careful deliberation. The new guidelines still recommend LDL-C as the primary target for lipid control, with CVD risk stratification to determine its target value. These guidelines recommend that moderate intensity statin therapy in adjunct with a heart-healthy lifestyle, be used as an initial line of treatment, followed by cholesterol absorption inhibitors or/and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, as necessary. The new guidelines provide guidance for lipid management across various age groups, from children to the elderly. The aim of these guidelines is to comprehensively improve the management of lipids and promote the prevention and treatment of ASCVD by guiding clinical practice.

Result Analysis
Print
Save
E-mail