1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Treatment of depression based on the theory of " liver disease affecting to the spleen"
Siyi WANG ; Jingchun LI ; Shaozhen JI ; Shuaihang HU ; Tianle ZHENG ; Fei WANG ; Qianqi WANG ; Jiaxiu LI ; Rongjuan GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):216-222
The " liver disease affecting to the spleen" theory first appeared in Nanjing and was further elaborated in Jingui Yaolue. This theory encapsulates the traditional Chinese medicine principles of the " unity of the five viscera" and the " preventive treatment of disease" . The theory emphasizes that the spleen is the pivotal point where depression may progress from a functional disorder to an organic disease. The liver governs the emotions and qi flow, whereas the spleen is responsible for qi, blood, and body. In the early stages of the disease, emotional disorders and qi flow disorders primarily affect the liver, manifesting as depression or low mood. As the condition progresses, the liver (Wood) overacts on the spleen (Earth), disrupting liver and spleen functions and causing qi and blood disharmony. This stage is marked by fatigue and psychomotor retardation. Prolonged illness depletes qi and blood, eventually involving all five viscera, disrupting the harmony of the five spirits, and affecting both body and spirit. At this advanced phase, intense emotional distress or agitation often arises, accompanied by a heightened risk of suicide. The disease progression follows a dynamic " qi-blood-spirit" pattern, in which depression begins in the liver, characterized by qi stagnation, then affects the spleen, involving blood disharmony. In later stages, the disease eventually affects all viscera, with profound effects on both physical and mental health. Treatment strategies should align with the disease stage. Early intervention should focus on regulating the flow of qi, treating the liver, and strengthening the spleen. In the middle stages, qi and blood should be harmonized while promoting the harmonized functions of the liver and spleen. In the later stages, treatment should harmonize the five viscera to restore balance between body and spirit. Guided by this theory, integrating modern medical understanding of the progression of depression from emotional to somatic symptoms and adopting a stage-based approach to treatment in clinical practice can yield effective therapeutic outcomes for managing depression and related disorders.
3.Clinical Value of Tumor-Stroma Ratio Combined with KRAS/NRAS/BRAF Gene Status in Prognostic Assessment of Patients with Colorectal Cancer
Ziyang ZHANG ; Yuanfei LI ; Yuntong GUO ; Gen ZHU ; Guang YANG ; Yu WANG
Cancer Research on Prevention and Treatment 2025;52(8):676-681
Objective To investigate the clinical value of tumor-stroma ratio (TSR) in combination with KRAS, BRAF, NRAS, and microsatellite status for prognostic assessment of patients with colorectal cancer. Methods A total of 51 colorectal cancer cases meeting the inclusion and exclusion criteria were enrolled in this study. TSR levels were evaluated through optical microscopy. The KRAS/NRAS/BRAF mutation profiles and microsatellite status were determined in accordance with genetic testing results. Clinical data, pathological characteristics, and survival outcomes were systematically recorded. Results Among the 51 patients with colorectal cancer, 19 (37.3%) were categorized into the low stromal group and 32 (62.7%) into the high stromal group. Statistically significant differences were observed between the two groups in drug resistance, M stage, TNM stage, neural invasion, and microsatellite status (P<0.05). Compared with patients exhibiting high TSR, those with low TSR demonstrated significantly increased recurrence rates (5 vs. 21 cases, P=0.007), shortened disease-free survival (34.21 vs. 14.34 months, P=0.001), and reduced overall survival (38.79 vs. 23.09 months, P=0.021). Multivariate Cox regression analysis identified N stage, M stage, TNM stage, neural invasion, lymphovascular invasion, and TSR as independent risk factors for disease-free survival. N stage, M stage, neural invasion, lymphovascular invasion, and TSR emerged as independent prognostic factors for overall survival (P<0.05). Although the combined models of TSR with KRAS, NRAS, BRAF, and microsatellite status, respectively, demonstrated overall statistical significance (P<0.05), none of the dummy variables in these models reached individually statistical significance (P>0.05), and therefore cannot be considered independent prognostic factors. Conclusion TSR serves as an independent predictor of poor prognosis in advanced colorectal cancer, with patients exhibiting low TSR demonstrating a significantly higher risk of recurrence and metastasis than those with high TSR. For patients with colon cancer undergoing first-line palliative chemotherapy after postoperative recurrence, histopathological assessment of TSR in primary tumor sites holds prognostic value and may serve as a relevant factor for evaluating treatment resistance in clinical management.
4.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
5.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical
6.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
7.The Influence of COVID-19 Infection on the Mobilization and Collection of Autologous Peripheral Blood Stem Cells in Patients with Multiple Myeloma.
Guo-Rong WANG ; Guang-Zhong YANG ; Yun LENG ; Yin WU ; Ai-Jun LIU ; Wen-Ming CHEN
Journal of Experimental Hematology 2025;33(2):455-462
OBJECTIVE:
To analyze the effect of COVID-19 infection on the mobilization and collection of autologous peripheral blood stem cells in patients with multiple myeloma.
METHODS:
The general baseline data, treatment factors before mobilization collection, collection status, and treatment overview after collection of autologous peripheral blood stem cells at Beijing Chaoyang Hospital affiliated with Capital Medical University from January 1, 2020 to July 15, 2023 were analyzed.
RESULTS:
269 patients underwent mobilization and collection of autologous peripheral blood stem cells. Among them, 32 cases with COVID-19 infection history (COVID-19 group) and 237 cases without COVID-19 infection history (non-COVID-19 group). In the COVID-19 group, 17 cases were treated with chemotherapy (etoposide)+G-CSF, and 15 cases were treated with plerixafor +G-CSF. In the non-COVID-19 group, 214 cases were treated with chemotherapy +G-CSF, 17 cases were treated with plerixafor +G-CSF, and 6 cases were treated with chemotherapy + plerixafor +G-CSF. The number of CD34+ cells, collection success rate, and excellence rate in the COVID-19 group and the non-COVID-19 group were [5.52 (0.94-26.87) vs 4.80 (0.53-37.20)]×106/kg (P =0.610), (93.8% vs 85.2%) (P =0.275), (62.5% vs 49.4%) (P =0.190), respectively. Among 113 patients mobilized with etoposide +G-CSF, the number of CD34+ cells, success rate, and excellence rate collected from COVID-19 infection (17 cases) and non-COVID-19 infection (96 cases) were [7.54 (2.66-26.87) vs 7.78 (2.26-37.20)]×106/kg (P =0.847), (100.0% vs 100.0%) (no P value), (82.4% vs 86.5%) (P =0.655), respectively. Among 32 patients mobilized by plerixafor +G-CSF, the number of CD34+ cells, success rate and excellence rate of COVID-19 infection (15 cases) and non-COVID-19 infection (17 cases) were [3.82 (0.94-7.27) vs 4.11 (0.53-9.05)]×106/kg (P =0.821), (86.7% vs 88.2%) (P =0.893), (40.0% vs 35.3%) (P =0.784), respectively. In 32 patients with COVID-19 infection, the number of CD34+ cells collected by etoposide +G-CSF (17 cases) and plerixafor +G-CSF (15 cases), as well as the success rate and excellence rate were [7.54 (2.66-26.87) vs 3.82(0.94-7.27)]×106/kg (P =0.004), (100.0% vs 86.7%) (P =0.120), (82.4% vs 40.0%) (P =0.014), respectively. By 2023.7.31, 232 patients (86.2%, 232/269) had received transplantation, including 24 patients in the COVID-19 group and 208 patients in the non-COVID-19 group. The median number of CD34+ cells infused in the two groups was [3.67 (2.50-13.44) vs 3.11(1.12-19.89)]×106/kg (P =0.058), the median days of neutrophil engraftment [11(9-13) vs 11(9-17)] (P =0.674), the median days of platelet engraftment [11(0-23), 12(0-43)] (P =0.279), respectively.
CONCLUSION
The history of COVID-19 infection did not affect the PBSC mobilization, collection and transplantation of patients with myeloma. In patients with COVID-19 infection, the results of chemotherapy mobilization with etoposide seems to be better than that of plerixafor mobilization, but further research is needed to clarify.
Humans
;
COVID-19/complications*
;
Multiple Myeloma/complications*
;
Hematopoietic Stem Cell Mobilization
;
Transplantation, Autologous
;
Granulocyte Colony-Stimulating Factor/therapeutic use*
;
Peripheral Blood Stem Cell Transplantation
;
SARS-CoV-2
;
Middle Aged
;
Peripheral Blood Stem Cells
;
Male
;
Female
;
Cyclams
;
Benzylamines
8.Effect of Cinnamaldehyde on Systemic Candida albicans Infection in Mice.
Xiao-Ru GUO ; Xiao-Guang ZHANG ; Gang-Sheng WANG ; Jia WANG ; Xiao-Jun LIU ; Jie-Hua DENG
Chinese journal of integrative medicine 2025;31(7):644-648
OBJECTIVE:
To investigate the therapeutic efficacy of cinnamaldehyde (CA) on systemic Candida albicans infection in mice and to provide supportive data for the development of novel antifungal drugs.
METHODS:
Ninety BALB/c mice were randomly divided into 3 groups according to a random number table: CA treatment group, fluconazole (positive control) group, and Tween saline (negative control) group, with 30 mice in each group. Initially, all groups of mice received consecutive intraperitoneal injections of cyclophosphamide at 200 mg/kg for 2 days, followed by intraperitoneal injection of 0.25 mL C. albicans fungal suspension (concentration of 1.0 × 107 CFU/mL) on the 4th day, to establish an immunosuppressed systemic Candida albicans infection animal model. Subsequently, the mice were orally administered CA, fluconazole and Tween saline, at 240, 240 mg/kg and 0.25 mL/kg respectively for 14 days. After a 48-h discontinuation of treatment, the liver, small intestine, and kidney tissues of mice were collected for fungal direct microscopic examination, culture, and histopathological examination. Additionally, renal tissues from each group of mice were collected for (1,3)- β -D-glucan detection. The survival status of mice in all groups was monitored for 14 days of drug administration.
RESULTS:
The CA group exhibited a fungal clearance rate of C. albicans above 86.7% (26/30), significantly higher than the fluconazole group (60.0%, 18/30, P<0.01) and the Tween saline group (30.0%, 9/30, P<0.01). Furthermore, histopathological examination in the CA group revealed the disappearance of inflammatory cells and near-normal restoration of tissue structure. The (1,3)-β-D-glucan detection value in the CA group (860.55 ± 126.73 pg/mL) was significantly lower than that in the fluconazole group (1985.13 ± 203.56 pg/mL, P<0.01) and the Tween saline group (5910.20 ± 320.56 pg/mL, P<0.01). The mouse survival rate reached 90.0% (27/30), higher than the fluconazole group (60.0%, 18/30) and the Tween saline group (30.0%, 9/30), with a significant difference between the two groups (both P<0.01).
CONCLUSIONS
CA treatment exhibited significant therapeutic efficacy in mice with systemic C. albicans infection. Therefore, CA holds potential as a novel antifungal agent for targeted treatment of C. albicans infection.
Animals
;
Acrolein/pharmacology*
;
Candida albicans/physiology*
;
Mice, Inbred BALB C
;
Candidiasis/pathology*
;
Antifungal Agents/therapeutic use*
;
Mice
;
Fluconazole/therapeutic use*
;
Kidney/drug effects*
;
Female
9.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
10.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.


Result Analysis
Print
Save
E-mail