1.Research on the effectiveness of health information dissemination via the “Shanghai CDC” WeChat public account
Ying GUO ; Xiaoxuan WANG ; Wen XIA ; Xiaoyan HUANG ; Xuanmeng HU ; Qi SHEN ; Chen DONG
Shanghai Journal of Preventive Medicine 2025;37(2):179-183
ObjectiveTo explore the effectiveness of health information dissemination and its influencing factors using the "Shanghai CDC" WeChat public account as a case study, providing references for public health institutions to optimize the use of official new media platforms for effective publicity. MethodsA total of 1 030 headline articles published on the "Shanghai CDC" WeChat public account between 2016 and 2019 were analyzed using content analysis and non-parametric tests to examine the impact of factors such as titles and content categories. ResultsFrom 2016 to 2019, the number of WeChat public account followers increased by 280 000, with the articles accumulating over 8.8 million views. The median (P25, P75) open rate of articles was 5.90% (3.69%, 10.31%), and the median (P25, P75) sharing and forwarding rate was 6.60% (4.25%, 9.17%). Factors such as the use of first- and second-person pronouns, degree adverbs, negative adverbs, explicit viewpoints, and title length all significantly affected the open rate of articles, with OR (95%CI) values of 0.175 (0.041‒0.756), 32.606 (2.350‒452.432), 4.079 (1.093‒15.230), 0.106 (0.028‒0.409), and 1.184 (1.063‒1.319),respectively (all P<0.05). In terms of content, statistical significant differences in dissemination effectiveness were observed across article categories and themes (P<0.05). In terms of article categories, articles related to news hotspots and service information had higher open rates of 9.58% and 14.00%, respectively. These two types of articles also obtained higher sharing and forwarding rates of 7.65% and 9.16%, respectively. In terms of article topics, compared with healthy life and health products, among the top four topics in terms of publication volume, the open rates of articles about infectious diseases and disease-causing biology and immunization programs were higher, accounting for 7.88% and 6.88%, respectively, with no significant difference in sharing and forwarding rates. ConclusionThe "Shanghai CDC" WeChat public account demonstrated good dissemination effectiveness. Enhancing article titles by increasing informational content and degree adverbs (e.g., "highly," "most," and "extremely") and negative adverbs (e.g., "no") can improve dissemination reach. Public health WeChat accounts should incorporate news hotspots or service information in their articles. While maintaining their strengths in disseminating knowledge on infectious diseases and immunization programs, they should also enhance public education in other professional fields within their scope of responsibility to improve the overall dissemination impact of health information.
2.Research progress on the relationship between the photobiomodulation and amblyopia
Shuxian HU ; Mei LIU ; Jingjing DONG ; Yang YANG ; Li LIU ; Xuan MA ; Liyun GUO
International Eye Science 2025;25(9):1431-1435
Amblyopia is a common visual development disorder and is the main cause of monocular vision impairment in children and adults. Photobiomodulation(PBM), a non-invasive treatment method, has gradually gained attention in the field of ophthalmology. This paper begins with the macroscopic manifestation of light on the animal model of amblyopia. Additionally, it discusses the pathological changes of the amblyopic retina and the human eye's central nervous system, as well as the influence and mechanism of PBM on the visual perception and processing system and its chemical effect on the visual system through dopamine and melatonin. It examines its mechanism of action, current clinical application status, and future development direction in order to provide new ideas and theoretical foundation for amblyopia treatment.
3.Whole-liver intensity-modulated radiation therapy as a rescue therapy for acute graft-versus-host disease after liver transplantation.
Dong CHEN ; Yuanyuan ZHAO ; Guangyuan HU ; Bo YANG ; Limin ZHANG ; Zipei WANG ; Hui GUO ; Qianyong ZHAO ; Lai WEI ; Zhishui CHEN
Chinese Medical Journal 2025;138(1):105-107
4.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
5.Adherence to blood glucose self-monitoring guidance and glycemic control in Chinese patients with type 2 diabetes mellitus initiating basal insulin: A mobile health-based prospective cohort study.
Lixin GUO ; Dalong ZHU ; Kaining CHEN ; Yaoming XUE ; Chao ZHOU ; Ping LIU ; Zhaohui HU ; Pei GU ; Wei ZHANG ; Huijie DONG ; Wanjun XIE ; Liqing GUAN
Chinese Medical Journal 2025;138(21):2832-2834
6.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
7.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
8.P2Y14R activation facilitates liver regeneration via CREB/DNMT3b/Dact-2/β-Catenin signals in acute liver failure.
Mengze ZHOU ; Yehong LI ; Jialong QIAN ; Xinli DONG ; Yanshuo GUO ; Li YIN ; Chunxiao LIU ; Kun HAO ; Qinghua HU
Acta Pharmaceutica Sinica B 2025;15(2):919-933
Acute liver failure (ALF) is lack of broadly approved therapeutic strategy except liver transplantation. As a glycogen metabolic intermediate, UDP-glucose (UDP-G) has been considered to accelerate liver repairment. Nevertheless, the role of UDP-G and its receptor P2Y purinoceptor 14 (P2Y14R) in ALF remains unknown. The present study aims to investigate the role and underlying mechanisms of UDP-G/P2Y14R axis in ALF. In this study, hepatic P2Y14R is significantly increased in TAA-induced and partial hepatectomy-induced ALF, while knockout of whole-body P2Y14R aggravates liver failure, manifested by inhibiting β-Catenin-mediated liver regeneration. Consistently, P2Y14R deficiency exhibits impaired liver regeneration in mice suffer partial hepatectomy. Importantly, only hepatocellular specific deletion of P2Y14R (P2Y14R flox/flox Alb cre/+ ) mice shows a similar phenomenon, rather than stellate cell specific deletion of P2Y14R (P2Y14R flox/flox Lrat cre/+ ) mice. Mechanistically, P2Y14R induction regulates methylation of Dact-2 through CREB/DNMT3b signals in hepatocytes, subsequently inhibiting the expression of Dact-2 which is a stabilizer of β-Catenin degradation complex, leading to the activation of β-Catenin -mediated liver regeneration. Interestingly, the administration of exogenous UDP-G can accelerate liver regeneration and liver function recovery after partial hepatectomy in hepatocellular carcinoma mice. Together, the findings propose an unrecognized role of P2Y14R in ALF and provide an effective adjuvant strategy for treatment of ALF.
9.Retraction Note: Fluoxetine is Neuroprotective in Early Brain Injury via its Anti-inflammatory and Anti-apoptotic Effects in a Rat Experimental Subarachnoid Hemorrhage Model.
Hui-Min HU ; Bin LI ; Xiao-Dong WANG ; Yun-Shan GUO ; Hua HUI ; Hai-Ping ZHANG ; Biao WANG ; Da-Geng HUANG ; Ding-Jun HAO
Neuroscience Bulletin 2025;41(11):2106-2106
10.Process parameter optimization and immunogenicity evaluation of calcium phosphate-coated foot-and-mouth disease virus-like particles.
Lihua REN ; Wei GUO ; Qianqian XIE ; Ruipeng LIU ; Shiqi SUN ; Hu DONG ; Yun ZHANG ; Manyuan BAI ; Huichen GUO ; Zhidong TENG
Chinese Journal of Biotechnology 2025;41(7):2672-2681
Bio-mineralization has emerged as a promising strategy to enhance vaccine immunogenicity. This study optimized the calcium phosphate (CaP) mineralization process of foot-and-mouth disease virus-like particles (FMD VLPs) to achieve high mineralization efficiency and scalability. Key parameters, including concentrations of Ca2+, HPO42-, NaCl, and VLPs, as well as stirring speed, were systematically optimized. Stability of the scaled-up reaction system and immunogenicity of the mineralized vaccine were evaluated. Optimal conditions [25.50 mmol/L Ca(NO3)2, 15 mmol/L Na2HPO4, 300 mmol/L NaCl, 0.75 mg/mL VLPs, and 1 500 r/min] yielded CaP-mineralized VLPs (VLPs-CaP) with high mineralization efficiency, uniform morphology, and a favorable particle size. Scaling up the reaction by 25 folds maintained consistent mineralization efficiency and particle characteristics. Immunization in mice demonstrated that VLPs-CaP induced higher titers of specific antibodies and neutralizing antibodies than unmineralized VLPs (P < 0.05). Higher IgG2a/IgG1 ratio and enhanced IFN-γ secretion (P < 0.05) further indicated robust cellular immune responses. We establish a stable and scalable protocol for VLPs-CaP, providing a theoretical and technical foundation for developing high-efficacy VLPs-CaP vaccines.
Vaccines, Virus-Like Particle/immunology*
;
Immunogenicity, Vaccine
;
Calcium Phosphates/chemistry*
;
Foot-and-Mouth Disease Virus
;
Biomineralization
;
Particle Size
;
Animals
;
Mice
;
Antibodies, Neutralizing/blood*
;
Antibodies, Viral/blood*
;
Immunity, Cellular

Result Analysis
Print
Save
E-mail