1.Identification and Biological Characterization of Pathogen and Screening of Effective Fungicides for Wilt of Tetradium ruticarpum
Yuxin LIU ; Qin XU ; Yue YUAN ; Tiantian GUO ; Zheng'en XIAO ; Shaotian ZHANG ; Ming LIU ; Fuqiang YIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):198-206
ObjectiveTo identify the pathogen species responsible for the wilt disease of Tetradium ruticarpum in Chongqing, investigate there biological characteristics, and screen effective fungicides, so as to provide a theoretical basis for disease control in production. MethodsThe pathogen was isolated via the tissue culture method. Pathogenicity was verified according to Koch's postulates. The pathogen was identified based on morphological characteristics and multi-gene phylogenetic analysis. The mycelial growth rate method was used for biological characterization of the pathogen and fungicide screening. ResultsThe pathogen colonies were nearly circular with irregular edges, white, short, velvety aerial hyphae, and pale purple undersides. Macroconidia were colorless, sickle-shaped, with 3-5 septa, while microconidia were transparent, elliptical, aseptate or with 1-2 septa. Multi-gene phylogenetic analysis showed that the pathogen clustered in the same clade as Fusarium fujikuroi with 100% support, which, combined with morphological characteristics, identified the pathogen causing wilt of T. ruticarpum in Chongqing as F. fujikuroi. The optimal conditions for the mycelial growth of F. fujikuroi were mung bean agar (MBA) with glucose as the carbon source, beef extract and yeast powder as nitrogen sources, 28 ℃, pH 7.0, and alternating light/dark conditions. The optimal conditions for sporulation were potato dextrose agar (PDA) with glucose as the carbon source, beef extract as the nitrogen source, 28 ℃, pH 7.0, and complete darkness. Among chemical fungicides, phenazine-1-carboxylic acid exhibited the strongest inhibitory effect on F. fujikuroi. Shenqinmycin and tetramycin were the most effective bio-fungicides. ConclusionThis study is the first to report F. fujikuroi as the causal agent of wilt disease in T. rutaecarpa. The chemical fungicide phenazine-1-carboxylic acid and the bio-fungicides shenqinmycin and tetramycin showed strong inhibitory effects against F. fujikuroi.
2.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
3.Effect of transcranial magneto-acousto-electrical stimulation on the plasticity of the prefrontal cortex network in mice
Shuai ZHANG ; Zichun LI ; Yihao XU ; Xiaofeng XIE ; Zhongsheng GUO ; Qingyang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1108-1117
BACKGROUND:Transcranial magneto-acoustic-electrical stimulation is a novel non-invasive neural regulation technique that utilizes the induced electric field generated by the coupling effect of ultrasound and static magnetic field to regulate the discharge activity of the nervous system.However,the mechanism by which it affects synaptic plasticity in the brain is still not enough. OBJECTIVE:To explore the effect of transcranial magneto-acoustic-electrical stimulation intensity on synaptic plasticity of the prefrontal cortex neural network in mice. METHODS:(1)Animal experiment:Twenty-four C57 mice were equally and randomly divided into four groups:the control group receiving pseudo-stimulation,the 6.35 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,6.35 W/cm2,the 17.36 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,17.36 W/cm2,and the 56.25 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,56.25 W/cm2.The local field potential signals and behavioral correctness were recorded during the execution of T-maze in mice.(2)Modeling and simulation experiments:A neural network model of the prefrontal cortex in mice stimulated by transcranial magneto-acoustic-electrical stimulation was constructed to compare the structural connectivity characteristics of the neural network under different stimulation intensities. RESULTS AND CONCLUSION:Transcranial magneto-acoustic-electrical stimulation could effectively shorten the behavior learning time,improve the working memory ability of mice(P<0.05),and continue to stimulate the frontal lobe of mice after learning behavior.There was no significant difference in the accuracy of the T-maze behavioral experiment among the experimental groups(P>0.1).Analysis of local field potential signals in the frontal lobe of mice revealed that transcranial magneto-acoustic-electrical stimulation promoted energy enhancement of β and γ rhythms.As the stimulation intensity increased,there was an asynchronous decrease in β and γ rhythms.Through β-γ phase amplitude coupling,it was found that stimuli could enhance the neural network's ability to adapt to new information and task requirements.Modeling and simulation experiments found that stimulation could enhance the discharge level of the neural network,increase the long-term synaptic weight level,and decrease the short-term synaptic weight level only when the stimulation intensity was high.To conclude,there is a complex nonlinear relationship between different stimulus intensities and the functional structure of neural networks.This neural regulation technique may provide new possibilities for the treatment of related neurological diseases such as synaptic dysfunction and neural network abnormalities.
4.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
5.Disease burden of chronic kidney disease attributable to high BMI in China and trend prediction in 1992-2021
Hong LIU ; Guimao YANG ; Yan SUI ; Xia ZHANG ; Xuebing CHENG ; Yaxing WU ; Xu GUO ; Yanfeng REN
Journal of Public Health and Preventive Medicine 2025;36(1):27-31
Objective To analyze the disease burden of chronic kidney diseases (CKD) attributed to high body mass index (BMI) in China from 1992 to 2021 and predict the disease burden for the next decade, and to provide evidence for the prevention and treatment of CKD. Methods Using the Global Burden of Disease (GBD) database and the Joinpoint model, the average annual percentage rate change (AAPC) of the mortality rate and disability-adjusted life year (DALY) rate was calculated to describe and analyze the CKD disease burden attributed to high BMI in China from 1992 to 2021. The ARIMA model was employed to predict and analyze the change trend of the CKD disease burden. Results From 1992 to 2021, the mortality rate and DALY rate attributed to high BMI-induced chronic kidney disease showed an upward trend. Compared to 1992, the attributed number of deaths increased by 324.38%, and DALYs increased by 268.56%; the mortality rate increased by 64.00%, and the DALY rate grew by 51.62%. From 1992 to 2021, the mortality rate and DALY rate for males were lower than those for females, but the growth rate for males exceeded that of females. From 1992 to 2021, the mortality rate and DALY rate of chronic kidney disease attributed to high BMI in China increased with age. The average annual change rate of chronic kidney disease attributed to high BMI in China from 1992 to 2021 (mortality rate: 1.40 per 100,000 (95% CI: 1.04–1.76), DALY rate: 1.43 per 100 000 (95% CI: 1.17–1.70)) was higher than thHuaiyin Normal University, Huai'anher social demographic index (SDI) regions. The ARIMA model predicted that the age-standardized mortality rate increased from 2.91 per 100 000 in 2022 to 3.05 per 100 000 in 2026, and the age-standardized DALY rate increased from 69.65 per 100 000 in 2022 to 73.58 per 100 000 in 2026. Conclusion Chronic kidney disease attributed to high BMI in China is on the rise, and it will continue to grow in the future. The focus of CKD prevention and control should be on males and the elderly, while active measures should be taken to reduce the occurrence and progression of chronic kidney disease.
6.Analysis of Quality Uniformity of Hengzhi Kechuan Capsules Based on HPLC-DAD-CAD
Qian MA ; An LIU ; Qingxia XU ; Cong GUO ; Jun ZHANG ; Maoqing WANG ; Xiaodi KOU ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):168-174
ObjectiveTo establish the fingerprints of 15 batches of Hengzhi Kechuan capsules, to quantitatively analyze 10 index components, and to evaluate the quality uniformity of samples from different batches. MethodsThe fingerprints and quantitative analysis of Hengzhi Kechuan capsules were established by a combination method of high performance liquid chromatography coupled with diode array detector and charged aerosol detector(HPLC-DAD-CAD), adenosine, guanosine, vanillic acid, safflomin A, agarotetrol, naringin, hesperidin, militarine, ginsenoside Rb1, and glycyrrhizic acid were selected as quality attribute indexes. A total of 15 batches of Hengzhi Kechuan capsules from 2022 to 2024(3 boxes per batch) were qualitatively and quantitatively analyzed, and the quality uniformity level of the manufacturers was characterized by parameters of intra-batch consistency(PA) and inter-batch consistency(PB). The homogeneity and difference of quality attribute indexes of samples from different years were analyzed by heatmap clustering analysis. ResultsHPLC fingerprints and quantitative method of Hengzhi Kechuan capsules were established, and the methods could be used for qualitative and quantitative analysis of this preparation, which was found to be stable and reliable by method validation. The similarity of fingerprints of 15 batches of samples was 0.887-0.975, a total of 13 common peaks were calibrated, and 10 common peaks were designated, all of which were quality attribute index components. The results of quantitative analysis showed that the contents of the above 10 ingredients in the samples were 0.038-0.078, 0.115-0.251, 0.007-0.018, 0.291-0.673, 0.122-0.257, 0.887-1.905, 1.841-3.364, 1.412-2.450, 2.207-3.112, 0.650-1.161, respectively. And the contents of ginsenoside Rb1 and glycyrrhizic acid met the limit requirements in the 2020 edition of Chinese Pharmacopoeia. For the samples from 15 batches, the PA values of the 10 index components were all <10%, indicating good intra-batch homogeneity, and the PB values ranged from 33.86% to 92.97%, suggesting that the inter-batch homogeneity was poor. Heatmap clustering analysis showed that the samples from different years were clustered into separate categories, and adenosine, guanosine, safflomin A, naringin, hesperidin and agarotetrol were the main differential components. ConclusionThe intra-annual quality uniformity of Hengzhi Kechuan capsules is good and the inter-annual quality uniformity is insufficient, which may be related to the quality difference of Pinellinae Rhizoma Praeparatum, Carthami Flos, Citri Sarcodactylis Fructus, Citri Reticulatae Pericarpium, Aquilariae Lignum Resinatum, Citri Fructus, etc. In this study, the fingerprint and multi-indicator determination method of Hengzhi Kechuan capsules was established, which can be used for more accurate and efficient quality control and standardization enhancement.
7.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
8.Aberrant fragmentomic features of circulating cell-free mitochondrial DNA enable early detection and prognosis prediction of hepatocellular carcinoma
Yang LIU ; Fan PENG ; Siyuan WANG ; Huanmin JIAO ; Kaixiang ZHOU ; Wenjie GUO ; Shanshan GUO ; Miao DANG ; Huanqin ZHANG ; Weizheng ZHOU ; Xu GUO ; Jinliang XING
Clinical and Molecular Hepatology 2025;31(1):196-212
Background/Aims:
Early detection and effective prognosis prediction in patients with hepatocellular carcinoma (HCC) provide an avenue for survival improvement, yet more effective approaches are greatly needed. We sought to develop the detection and prognosis models with ultra-sensitivity and low cost based on fragmentomic features of circulating cell free mtDNA (ccf-mtDNA).
Methods:
Capture-based mtDNA sequencing was carried out in plasma cell-free DNA samples from 1168 participants, including 571 patients with HCC, 301 patients with chronic hepatitis B or liver cirrhosis (CHB/LC) and 296 healthy controls (HC).
Results:
The systematic analysis revealed significantly aberrant fragmentomic features of ccf-mtDNA in HCC group when compared with CHB/LC and HC groups. Moreover, we constructed a random forest algorithm-based HCC detection model by utilizing ccf-mtDNA fragmentomic features. Both internal and two external validation cohorts demonstrated the excellent capacity of our model in distinguishing early HCC patients from HC and highrisk population with CHB/LC, with AUC exceeding 0.983 and 0.981, sensitivity over 89.6% and 89.61%, and specificity over 98.20% and 95.00%, respectively, greatly surpassing the performance of alpha-fetoprotein (AFP) and mtDNA copy number. We also developed an HCC prognosis prediction model by LASSO-Cox regression to select 20 fragmentomic features, which exhibited exceptional ability in predicting 1-year, 2-year and 3-year survival (AUC=0.8333, 0.8145 and 0.7958 for validation cohort, respectively).
Conclusions
We have developed and validated a high-performing and low-cost approach in a large clinical cohort based on aberrant ccf-mtDNA fragmentomic features with promising clinical translational application for the early detection and prognosis prediction of HCC patients.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Review on separation and determination of 63Ni in solid wastes and liquid effluents from nuclear power plants
Mengyu FU ; Xinjie GUO ; Xuqin ZHANG ; Junwu TANG ; Yongshi XU ; Hongshen DING
Chinese Journal of Radiological Health 2025;34(1):142-148
63Ni is predominantly generated through neutron activation in nuclear reactors and is classified as a pure beta-emitting radionuclide with a half-life of 101.1 a. During decay, 63Ni emits a beta ray with an energy of 65.87 keV. 63Ni can be used in the manufacture of beta radiation sources, which are utilized as reference and working sources for beta activity measurement and beta energy response calibration. Additionally, it is used in electron capture detectors for chromatography, ionization sources in electron tubes, and electron capture probes in gas chromatography. These instruments have extensive applications in food safety, public health and epidemic prevention, soil pollution monitoring, and security. 63Ni is an artificial radionuclide not commonly found in the natural environment under normal conditions. However, the 63Ni generated during routine operations of nuclear power plants, as well as residual materials and wastes contaminated with 63Ni during plant decommissioning, may be released into the environment through liquid effluents or solid wastes. This can pose potential radiation risks to both the public and the environment. Hence, it is necessary to monitor the activity concentration of 63Ni. Currently, reports on this subject are limited in China, and there is a lack of established standards for the determination of 63Ni in nuclear power plants. This article reviews the global literature on the pretreatment and purification measurement processes of 63Ni. The merits and demerits are summarized for pretreatment methods such as acid leaching, mixed acid digestion, ashing acid leaching/dissolution, and alkali fusion, and for separation and purification methods like solvent extraction, precipitation, and extraction chromatography. The article also highlights the advantages of measurement using liquid scintillation counters. This review provides a reference for the establishment of the determination method of 63Ni in liquid effluents and solid wastes from nuclear power plants.


Result Analysis
Print
Save
E-mail