1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Review on alcohol exposure associated embryonic stem cell differentiation mechanisms
Jing GAO ; Bingchun LIU ; Hong CHEN ; Peixin XU ; Xin GUO ; Jianlong YUAN ; Yang LIU
Journal of Environmental and Occupational Medicine 2025;42(5):637-643
Alcohol exposure, as a widespread environmental factor, is highly toxic and teratogenic. Embryonic stem cells (ESCs) are pluripotent and key to development, and their gene expression is tightly regulated, allowing the cells to differentiate without self-renewal. Numerous studies showed that alcohol is an important factor affecting the differentiation of ESCs. In this paper, we systematically summarized four major molecular mechanisms underlying alcohol associated differentiation of ESCs: (1) inhibition of the Wnt signaling pathway; (2) restriction of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway; (3) alteration of the expression of pluripotent transcription factors; and (4) activation of the nuclear transcriptional program. Through the above mechanisms, alcohol induces aberrant expression of differentiation-related genes and alters the direction of cellular differentiation towards specific lineages, thereby affecting normal embryonic development. Based on the studies on ESCs modeling and other in vitro and in vivo differentiation experiments, the molecular basis of how alcohol affects differentiation by interfering with signaling networks and transcriptional regulation was elucidated, and the results of current research in this field were also summarized, which is crucial for understanding alcohol-mediated toxic effects.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.Effects of common environmental pollutants on sperm DNA methylation
Xin GUO ; Bingchun LIU ; Huizeng WANG ; Hong CHEN ; Peixin XU ; Jianlong YUAN
Journal of Environmental and Occupational Medicine 2025;42(7):876-883
Infertility is a common reproductive disorder affecting millions of couples worldwide. It is estimated that male factors account for about 30%-50% of infertility cases, and some studies have found that the concentration of male sperm gradually decreases over time, a trend that suggests the importance of male fertility. Many factors contribute to the decline of male fertility, among which environmental factors have received widespread attention. After reaching adulthood, spermatogonial stem cells will continue to produce sperm, but these cells exist outside the blood testicular barrier, which makes them highly sensitive to environmental conditions such as air pollution, tobacco smoke, radiation, and heavy metals. It is reported that exposure to these adverse environmental factors not only causes oxidative stress and DNA damage to germ cells, but also leads to abnormal epigenetic modification of sperm DNA, thereby causing a series of diseases. This article reviewed the abnormal methylation changes in DNA associated with exposure to environmental pollutants during spermatogenesis and how these changes affect the quantity, quality, and function of spermatozoa.
7.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
8.Effects of emodin on inflammatory response in preeclampsia rats by regulating AMPK/TXNIP/NLRP3 signaling pathway
Fen CHEN ; Fei-Fei YUAN ; Wei LI ; Hong-Li XI ; Hong-Yan GUO
The Chinese Journal of Clinical Pharmacology 2024;40(14):2068-2072
Objective To explore the effect of emodin on inflammatory response in preeclampsia(PE)rats by regulating the AMP activated protein kinase(AMPK)/thioredoxin-interacting protein(TXNIP)/NOD-like receptor pyrin domain-containing protein 3(NLRP3)signaling pathway.Methods PE rat model was established by subcutaneous injection of L-arginine methyl ester(100 mg·kg-1).Sixty female rats were randomly divided into control group,model group,emodin group(40 mg·kg-1 emodin),Compound B10 group(100 mg·kg-1 Compound B10),emodin+Compound B10 group(40 mg·kg-1 emodin+100 mg·kg-1 Compound B10),with 12 rats in each group.The control group and the model group were intraperitoneally injected with the same amount of 0.9%NaCl.The 24 h urine was collected,and the total urinary protein content was determined by Coomassie brilliant blue method.The protein levels of AMPK/TXNIP/NLRP3 signaling pathway were detected by Western blot.Results The total urinary protein levels of control group,model group,emodin group,Compound B10 group and emodin+Compound B10 group were(54.34±6.26),(136.37±15.43),(76.38±8.61),(215.39±25.14)and(110.93±13.92)g·L-1,respectively;urine volume were(10.59±0.92),(15.38±1.49),(11.51±1.13),(21.49±2.50)and(14.71±1.49)mL,respectively;AMPK protein levels were 0.63±0.06,1.57±0.18,0.81±0.09,2.34±0.23 and 1.38±0.15,respectively;TXNIP protein levels were 0.33±0.04,0.79±0.08,0.49±0.10,1.13±0.12 and 0.82±0.09,respectively;NLRP3 protein levels were 0.46±0.05,0.83±0.09,0.56±0.07,1.25±0.14 and 0.78±0.08,respectively.The above indexes:Model group was compared with control group,emodin group and Compound B10 group,emodin+Compound B10 group was compared with emodin group,the differences were statistically significant(all P<0.05).Conclusion Emodin may alleviate inflammatory reaction in PE rats by inhibiting AMPK/TXNIP/NLRP3 signal axis,thereby improving placental injury.
9.Clinicopathological and prognostic characteristics of intestinal inflammatory myofibroblastic tumor in middle-aged and elderly patients
Minhua TAN ; Wei CHEN ; Jinhui GUO ; Yongjian ZHOU ; Weihua LEI ; Mushi LIU ; Dong SHEN ; Hong SHEN
The Journal of Practical Medicine 2024;40(4):503-507
Objective To investigate the clinicopathological and prognostic characteristics of intestinal inflammatory myofibroblastic tumours(IMT)in middle-aged and elderly patients.Methods The clinical,pathologi-cal morphology,immunophenotype and follow-up results of 5 cases of intestinal IMT in middle-aged and elderly patients were retrospectively analyzed.Results 4 cases of IMT occurred in the right half colon and 1 in the ileum.Most patients(3/5)had a history of intestinal injury,starting the digestive tract symptoms and increased leukocytes.The tumor tissue was composed of fusiform myofibroblasts and fibroblasts arranged in storiform pattern,with an infiltrative growth pattern,accompanied by a large number of lymphocytes and plasma cells infiltration,collagen formation and myxedema.One case was atypically large and deformed.Immunophenotype:vimentin(5cases),SMA(5 cases),desmin(3 cases),ALK(3 cases),CK(2 cases)were positive.Caldesmon,CD34,β-catenin,MC,CD117,DOG1,S-100,BCL-2,CD99,CD68 were negative,and Ki-67 proliferation index was 1.28%to 10.01%.All the 5 cases underwent complete tumor resection and were followed up for 48.5 to 133 months.Among them,1 patient aged 83 was considered to have tumor recurrence 27 months after surgery.The other patient survived 122 months without tumor and died of other causes.All the others survived without tumor and were in good condition.Conclusion(1)Intestinal IMT in the middle-aged and elderly people in this group was more common in the right half colon,and most of them had a history of intestinal injury,first gastrointestinal symptoms and elevated white blood cells;(2)Vimentin and SMA were positive at the same time,and ALK was more positive;(3)4/5 patients had good surgical resection,and 1/5 patients could relapse 2~3 years after surgery;old age,ALK-positive,Ki67 up to 10%,atypia may be an important risk factor for intestinal IMT recurrence in the elderly,of which ALK-positive patients may have a recurrence risk of 1/3.
10.Advances in Nucleic Acid Drugs and Gene Therapies based on Animal Models of Duchenne Muscular Dystrophy
Siyu LIU ; Yuezhao LAI ; Wenting GUO ; Xuejin CHEN
Laboratory Animal and Comparative Medicine 2024;44(6):613-625
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive genetic disorder caused by mutations in the DMD gene, making it one of the most common forms of hereditary muscular dystrophy. The DMD gene, which encodes dystrophin, is the largest known gene in the human genome. Mutations in the DMD gene are highly diverse, including exon deletions, duplications, point mutations, and small insertions or deletions, posing significant challenges for treatment. Currently, there is no cure for DMD, and existing treatment strategies focus primarily on symptom management, which cannot reverse or halt disease progression. Advances in biotechnology position nucleic acid drugs and gene therapies at the forefront of DMD treatment research. These treatments aim to restore dystrophin expression by repairing or replacing mutated genes, thereby improving muscle function or slowing muscle degeneration. Preclinical studies in animal models and early-phase clinical trials demonstrate promising efficacy and offer new hope for DMD patients. This review briefly outlines the pathological mechanisms and genetic characteristics of DMD before delving into recent progress in therapeutic strategies, with a particular focus on nucleic acid drugs (including antisense oligonucleotides for exon skipping therapy and translation readthrough inducers) and gene therapy approaches (including gene replacement therapy and gene editing). The development and application of these therapies not only provide new treatment options for DMD patients, but also offer valuable insights for addressing other genetic disorders. However, numerous challenges impede the clinical translation of DMD treatments. Future studies must optimize existing therapeutic strategies, improve their efficacy and applicability, and explore innovative approaches to deliver more effective and sustainable treatments for DMD patients.

Result Analysis
Print
Save
E-mail