1.Application of digital technology and platelet-rich fibrin technology in a novel regenerative treatment for posterior lingual furcation defect: a 6-year follow-up case report.
Yuanyuan YU ; Shuaiqi ZHONG ; Weilian SUN ; Lihong LEI
West China Journal of Stomatology 2023;41(5):582-591
Conventional periodontal regenerative surgery has limited effect on tooth with severe periodontitis-related alveolar bone defects. This article reported a case of regenerative treatment in severe distal-bone defect of mandibular first molar. The treatment involved applying 3D printing, advanced/injectable platelet-rich fibrin, and guided tissue-regeneration technology. After the operation, the periodontal clinical index significantly improved and the alveolar bone was well reconstructed.
Humans
;
Platelet-Rich Fibrin
;
Follow-Up Studies
;
Digital Technology
;
Furcation Defects/drug therapy*
;
Periodontitis
;
Guided Tissue Regeneration, Periodontal
2.Clinical classification and treatment decision of implant fracture.
Yu LI ; Hua Jie YU ; Li Xin QIU
Journal of Peking University(Health Sciences) 2022;54(1):126-133
OBJECTIVE:
To propose a set of two-dimensional clinical classification of fractured implants based on the follow-up of fracturing pattern of implant body and peri-implant bone defect morphology of 32 fractrued implants, and summarize the treatment decisions of fractured implants according to this new set of classification, so as to provide guidance for clinical practice.
METHODS:
During 25 years of clinical practice, clinical records of 27 patients of 32 fractured implants in 5 481 patients with 10 642 implants were made. The fracturing pattern of implant body, implant design, peri-implant bone defect morphology and treatment options were analyzed. A set of two-dimensional clinical classification based on the morphology and bone absorption of implant fracture was proposed. The treatment decision-making scheme based on the new classification of implant fracture was discussed.
RESULTS:
In the new classification system, vertical fracture of implant neck (Type 1 of implant fracture morphology, F1) and horizontal fracture of implant neck (Type 2 of implant fracture morphology, F2) were common, accounting for 50% and 40.6% respectively, while deep horizontal fracture of implant body (Type 3 of implant fracture morphology, F3) (9.4%) were rare, while the three types of bone defects (D1, no bone defect or narrow infrabony defects; D2, wide 4-wall bone defects or cup-like defects, D3, wide 3-wall or 2-wall defects) around implants were evenly distributed. In the two-dimensional classification system of implant fracture, F1D1 (31.3%) and F2D2 (25%) were the most frequent. There was a significant positive correlation between F1 and D1 (r=0.592, P < 0.001), a significant positive correlation between F2 and D2 (r=0.352, P=0.048), and a significant negative correlation between F1 and D2 (r=-0.465, P=0.007). The most common treatment for implant fracture was implant removal + guided bone regeneration(GBR) + delayed implant (65.6%), followed by implant removal + simultaneous implant (18.8%). F1D1 type was significantly related to the treatment strategy of implant removal + simultaneous implantation (r=0.367, P=0.039). On this basis, the decision tree of implant fracture treatment was summarized.
CONCLUSION
The new two-dimensional classification of implant fracture is suitable for clinical application, and can provide guidance and reference for clinical treatment of implant fracture.
Alveolar Bone Loss
;
Bone Regeneration
;
Dental Implantation, Endosseous
;
Dental Implants
;
Guided Tissue Regeneration, Periodontal
;
Humans
;
Prostheses and Implants
3.Effect of Er:YAG laser combined with ethylenediamine tetra acetic acid on three-walled periodontal intrabony defects adjacent to implant sites.
Ba Li Gen BOLATIHAN ; Zhi Hui LIN ; Yi MAN
West China Journal of Stomatology 2021;39(6):718-723
OBJECTIVES:
To investigate the clinical effect of Er:YAG laser combined with ethylenediamine tetra acetic acid (EDTA) on three-walled periodontal intrabony defects adjacent to implant sites.
METHODS:
A total of 30 patients with three-walled periodontal intrabony defects adjacent to implant sites were treated with the combination therapy. Patients with three-walled intrabony defects were divided into two groups according to the depth of the intrabony pocket between the implant and natural teeth. Evaluation of wound healing was performed 10 days after the operation, and bone augmentation was evaluated 6 months after the operation.
RESULTS:
Primary healing in group 1 was 92.31%, primary healing in group 2 was 82.35%. No significant difference was observed between the two groups (
CONCLUSIONS
The effect of bone augmentation with combination therapy was more ideal in group 2 than in group 1. Implant placement with combination therapy may be a viable technique to reconstruct three-walled intrabony defects due to the space maintenance provided by implants and bone grafts and the good root surface biocompatibility provided by the Er:YAG laser and EDTA.
Acetic Acid
;
Alveolar Bone Loss
;
Dental Implants
;
Ethylenediamines
;
Follow-Up Studies
;
Guided Tissue Regeneration, Periodontal
;
Humans
;
Lasers, Solid-State
;
Periodontal Attachment Loss
;
Treatment Outcome
4.Effect of concentrated growth factors combined with guided tissue regeneration in treatment of classII furcation involvements of mandibular molars.
Fei LI ; Jing QIAO ; Jin Yu DUAN ; Yong ZHANG ; Xiu Jing WANG
Journal of Peking University(Health Sciences) 2020;52(2):346-352
OBJECTIVE:
Tissues loss due to periodontal disease is typically treated by a variety of regenerative treatment modalities, including bone grafts, guided tissue regeneration (GTR) and growth factors, to reform the supporting tissues of teeth. Concentrated growth factors (CGF) are produced by centrifuging blood samples at alternating and controlled speeds using a special centrifuge. The purpose of this study was to evaluate whether GTR could improve the effect of CGF combined with bone graft in the treatment of classII furcations of mandibular molars.
METHODS:
In the present study, thirty-five classII furcation involvements were included and randomly divided into two groups. The experimental group (n=17) accepted GTR combined with CGF and bone graft therapy, and the controlled group (n=18) accepted CGF combined with bone graft therapy. The clinical examinations and cone beam computed tomography (CBCT) were performed at baseline and 1 year post-surgery. Comparisons of clinical and CBCT data before and after operation between the experimental group and the control group were made.
RESULTS:
The clinical and CBCT data of both groups were not statistically different at baseline (P>0.05). At the end of 1 year post-surgery, the clinical parameters of both groups were significantly improved (P<0.001). The probing depths of the experimental group were (4.81±1.95) mm and (3.56±1.94) mm, respectively, significantly higher than the changes of the control group (P<0.001). The vertical and horizontal attachment gains of the experimental group were (4.11±1.98) mm and (3.84±1.68) mm, respectively, significantly higher than the changes of the control group (P<0.001). At the end of 1 year post-surgery, the experimental group showed significantly higher bone gain at vertical and horizontal directions compared with those of the control group: (3.84±1.68) and (3.88±2.12) mm, respectively (P<0.001).
CONCLUSION
Within the limitation of the present study, GTR showed positive role in the effect of CGF combined with bone graft in the treatment of classII furcation involvements of mandibular molars.
Bone Transplantation
;
Cone-Beam Computed Tomography
;
Furcation Defects
;
Guided Tissue Regeneration, Periodontal
;
Humans
;
Molar
;
Periodontal Attachment Loss
5.Bone-conditioned medium contributes to initiation and progression of osteogenesis by exhibiting synergistic TGF-β1/BMP-2 activity.
Maria B ASPARUHOVA ; Jordi CABALLÉ-SERRANO ; Daniel BUSER ; Vivianne CHAPPUIS
International Journal of Oral Science 2018;10(2):20-20
Guided bone regeneration (GBR) often utilizes a combination of autologous bone grafts, deproteinized bovine bone mineral (DBBM), and collagen membranes. DBBM and collagen membranes pre-coated with bone-conditioned medium (BCM) extracted from locally harvested autologous bone chips have shown great regenerative potential in GBR. However, the underlying molecular mechanism remains largely unknown. Here, we investigated the composition of BCM and its activity on the osteogenic potential of mesenchymal stromal cells. We detected a fast and significant (P < 0.001) release of transforming growth factor-β1 (TGF-β1) from autologous bone within 10 min versus a delayed bone morphogenetic protein-2 (BMP-2) release from 40 min onwards. BCMs harvested within short time periods (10, 20, or 40 min), corresponding to the time of a typical surgical procedure, significantly increased the proliferative activity and collagen matrix production of BCM-treated cells. Long-term (1, 3, or 6 days)-extracted BCMs promoted the later stages of osteoblast differentiation and maturation. Short-term-extracted BCMs, in which TGF-β1 but no BMP-2 was detected, reduced the expression of the late differentiation marker osteocalcin. However, when both growth factors were present simultaneously in the BCM, no inhibitory effects on osteoblast differentiation were observed, suggesting a synergistic TGF-β1/BMP-2 activity. Consequently, in cells that were co-stimulated with recombinant TGF-β1 and BMP-2, we showed a significant stimulatory and dose-dependent effect of TGF-β1 on BMP-2-induced osteoblast differentiation due to prolonged BMP signaling and reduced expression of the BMP-2 antagonist noggin. Altogether, our data provide new insights into the molecular mechanisms underlying the favorable outcome from GBR procedures using BCM, derived from autologous bone grafts.
Biomarkers
;
metabolism
;
Bone Morphogenetic Protein 2
;
metabolism
;
Cell Adhesion
;
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Culture Media, Conditioned
;
pharmacology
;
Guided Tissue Regeneration, Periodontal
;
methods
;
Humans
;
Mesenchymal Stem Cells
;
metabolism
;
Osteoblasts
;
metabolism
;
Osteogenesis
;
drug effects
;
Transforming Growth Factor beta1
;
metabolism
6.Comparison of Different Periodontal Healing of Critical Size Noncontained and Contained Intrabony Defects in Beagles.
Sheng-Qi ZANG ; Shuai KANG ; Xin HU ; Meng WANG ; Xin-Wen WANG ; Tao ZHOU ; Qin-Tao WANG
Chinese Medical Journal 2017;130(4):477-486
BACKGROUNDRegenerative techniques help promote the formation of new attachment and bone filling in periodontal defects. However, the dimensions of intraosseous defects are a key determinant of periodontal regeneration outcomes. In this study, we evaluated the efficacy of use of anorganic bovine bone (ABB) graft in combination with collagen membrane (CM), to facilitate healing of noncontained (1-wall) and contained (3-wall) critical size periodontal defects.
METHODSThe study began on March 2013, and was completed on May 2014. One-wall (7 mm × 4 mm) and 3-wall (5 mm × 4 mm) intrabony periodontal defects were surgically created bilaterally in the mandibular third premolars and first molars in eight beagles. The defects were treated with ABB in combination with CM (ABB + CM group) or open flap debridement (OFD group). The animals were euthanized at 8-week postsurgery for histological analysis. Two independent Student's t-tests (1-wall [ABB + CM] vs. 1-wall [OFD] and 3-wall [ABB + CM] vs. 3-wall [OFD]) were used to assess between-group differences.
RESULTSThe mean new bone height in both 1- and 3-wall intrabony defects in the ABB + CM group was significantly greater than that in the OFD group (1-wall: 4.99 ± 0.70 mm vs. 3.01 ± 0.37 mm, P < 0.05; 3-wall: 3.11 ± 0.59 mm vs. 2.08 ± 0.24 mm, P < 0.05). The mean new cementum in 1-wall intrabony defects in the ABB + CM group was significantly greater than that in their counterparts in the OFD group (5.08 ± 0.68 mm vs. 1.16 ± 0.38 mm; P < 0.05). Likewise, only the 1-wall intrabony defect model showed a significant difference with respect to junctional epithelium between ABB + CM and OFD groups (0.67 ± 0.23 mm vs. 1.12 ± 0.28 mm, P < 0.05).
CONCLUSIONSOne-wall intrabony defects treated with ABB and CM did not show less periodontal regeneration than that in 3-wall intrabony defect. The noncontained 1-wall intrabony defect might be a more discriminative defect model for further research into periodontal regeneration.
Alveolar Bone Loss ; surgery ; Animals ; Biocompatible Materials ; therapeutic use ; Bone Regeneration ; physiology ; Bone Substitutes ; therapeutic use ; Cattle ; Dogs ; Guided Tissue Regeneration, Periodontal ; methods ; Male ; Wound Healing ; physiology
7.Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells.
Eun Cheol KIM ; Jaesuh PARK ; Il Keun KWON ; Suk Won LEE ; Su Jung PARK ; Su Jin AHN
Journal of Periodontal & Implant Science 2017;47(5):273-291
PURPOSE: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. METHODS: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. RESULTS: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and total β-catenin protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways were activated. CONCLUSIONS: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.
Alkaline Phosphatase
;
Blotting, Western
;
Bone Regeneration
;
Calcium
;
Dental Cementum*
;
Dental Prosthesis
;
Gene Expression
;
Glycogen Synthase
;
Guided Tissue Regeneration, Periodontal
;
Humans
;
Immunohistochemistry
;
JNK Mitogen-Activated Protein Kinases
;
Magnetic Fields*
;
Miners
;
Osteoblasts*
;
Periodontal Diseases
;
Periodontal Ligament*
;
Phosphorylation
;
Polymerase Chain Reaction
;
Protein Kinases
;
Regeneration
;
Relative Biological Effectiveness
;
Reverse Transcription
;
RNA, Messenger
;
Signal Transduction
;
Wnt Proteins
8.Periodontal wound healing following reciprocal autologous root transplantation in class III furcation defects.
Naoshi TAKEUCHI ; Yoshinori SHIRAKATA ; Yukiya SHINOHARA ; Kotaro SENA ; Kazuyuki NOGUCHI
Journal of Periodontal & Implant Science 2017;47(6):352-362
PURPOSE: Furcation involvement in the molars is difficult to treat, and has been recognized as a risk factor for tooth loss. Although periodontal regenerative therapies, including guided tissue regeneration and various types of bone grafts, have been applied to furcation defects, the effects of these treatments are limited, especially in large class III furcation defects. The purpose of this pilot study was to investigate the effect of reciprocal autologous root transplantation on periodontal wound healing and regeneration in class III furcation defects in dogs. METHODS: Furcation defects (7 mm wide and 6 mm high) were surgically created after root separation of the unilateral third and fourth premolars in 4 dogs. Eight furcation defects were randomized to receive either reciprocal autologous root transplantation (test) or no further treatment (control). In the test group, the mesial and distal roots were transplanted into the distal and mesial extraction sockets, respectively. The animals were sacrificed 10 weeks after surgery for histologic evaluation. RESULTS: The healing pattern in the control group was characterized by extensive collapse of the flap and limited periodontal regeneration. New bone formation in the test group (3.56±0.57 mm) was significantly greater than in the control group (0.62±0.21 mm). Dense collagen fibers inserting into the residual cementum on the transplanted root surfaces were observed in the test group. Slight ankylosis was observed in 2 of the 4 specimens in the test group on the mesiodistal sides where the root-planed surfaces faced the existing bone. Root resorption (RR) was detected in both the control and test groups. CONCLUSIONS: Within the limits of this study, it can be concluded that reciprocal autologous root transplantation was effective for bone regeneration in class III furcation defects in dogs. However, further studies are required to standardize the approach in order to prevent unwanted RR prior to clinical application.
Animals
;
Ankylosis
;
Bicuspid
;
Bone Regeneration
;
Collagen
;
Dental Cementum
;
Dogs
;
Furcation Defects*
;
Guided Tissue Regeneration
;
Models, Animal
;
Molar
;
Osteogenesis
;
Periodontal Diseases
;
Periodontal Ligament
;
Pilot Projects
;
Regeneration
;
Risk Factors
;
Root Resorption
;
Tooth Loss
;
Transplants
;
Wound Healing*
;
Wounds and Injuries*
9.The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing.
Marco MONTEVECCHI ; Annapaola PARRILLI ; Milena FINI ; Maria Rosaria GATTO ; Aurelio MUTTINI ; Luigi CHECCHI
Journal of Periodontal & Implant Science 2016;46(5):303-319
PURPOSE: The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. METHODS: Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. RESULTS: New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. CONCLUSIONS: After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.
Adult
;
Animals
;
Ankylosis
;
Bone and Bones
;
Guided Tissue Regeneration
;
Humans
;
Imaging, Three-Dimensional
;
Incisor
;
Membranes
;
Periodontal Ligament*
;
Periodontium
;
Regeneration
;
Research Design
;
Root Resorption
;
Sus scrofa
;
Tooth
;
Wound Healing*
;
Wounds and Injuries*

Result Analysis
Print
Save
E-mail