1.Mechanism of Maxiong Powder in inhibiting Epac1-Piezo2 signaling pathway in medial habenular nucleus-interpeduncular nucleus of rats with neuropathic pain.
Xin-Yuan WANG ; Zhi CHEN ; Ying LIU ; Jian SUN ; Ru-Jie LI ; Zhi-Guo WANG ; Mei-Yu ZHANG
China Journal of Chinese Materia Medica 2025;50(10):2719-2729
Central sensitization(CS) is an important factor in inducing neuropathic pain(NPP), and the association between signal transduction protein 1(Epac1) and piezoelectric type mechanosensitive ion channel component 2(Piezo2) is a new and significant pathway for initiating CS. This study whether the central analgesic effect of Maxiong Powder is achieved through the synchronized regulation of the Epac1-Piezo2 signaling pathway in the medial habenular nucleus(MHb) and interpeduncular nucleus(IPN) of the brain. Dynamic in vivo microdialysis, combined with high-performance liquid chromatography-fluorescence detection(HPLC-RFC), behavioral assessments, immunohistochemistry, Western blot, and quantitative reverse transcription PCR, were employed in rats with partial sciatic nerve injury(SNI) to investigate the distribution and expression of Epac1 and Piezo2 proteins and genes in the MHb and IPN regions, and the changes in the extracellular levels of glutamate(Glu), aspartic acid(Asp), and glycine(Gly). Compared with the sham group, rats in the SNI group showed significantly reduced analgesic activity, a significant increase in cold pain sensitivity scores, and elevated Glu levels in the MHb and IPN regions. Additionally, the number of Piezo2-positive cells in these regions, as well as the expression levels of Epac1 and Piezo2 proteins and genes, were significantly increased. Compared with the SNI group, after Maxiong Powder administration, the analgesic activity in rats significantly increased, and cold pain sensitivity scores were significantly reduced. Maxiong Powder also significantly decreased the Glu content in the MHb and IPN regions and the Gly content in the MHb region, while significantly increasing the Asp content in both regions. Furthermore, Maxiong Powder significantly reduced the number of Piezo2-positive cells and lowered the protein and gene expression levels of Epac1 and Piezo2 in both brain regions. The central analgesic effect of Maxiong Powder may be related to its inhibition of Glu and Gly release in the extracellular fluid of the MHb and IPN regions, the increase of Asp levels in these regions, and the regulation of the Epac1-Piezo2 pathway through the reduction of Epac1 and Piezo2 protein and gene expression. These results provide partial scientific evidence for the clinical analgesic efficacy of Maxiong Powder and offer new ideas and approaches for the clinical treatment of NPP.
Animals
;
Neuralgia/genetics*
;
Rats
;
Signal Transduction/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Guanine Nucleotide Exchange Factors/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Habenula/drug effects*
;
Ion Channels/genetics*
;
Humans
2.RGL1 overexpression promotes metastasis of colorectal cancer by upregulating motile focal adhesion assembly via activating the CDC42/RAC1 complex.
Nuozhou WENG ; Bin TAN ; Wentao ZENG ; Jiayu GU ; Lianji WENG ; Kehong ZHENG
Journal of Southern Medical University 2025;45(5):1031-1038
OBJECTIVES:
To investigate the regulatory role of Ral guanine nucleotide dissociation stimulator-like 1 (RGL1) in metastasis of colorectal cancer (CRC).
METHODS:
We analyzed the differential expression of RGL1 between metastatic and non-metastatic CRC in GEO database, and examined its expression in 25 patients with metastatic CRC and 25 patients with non-metastatic CRC treated in Zhujiang Hospital between January, 2020 and December, 2022 using quantitative PCR (qPCR) and immunohistochemistry. HCT116 cell lines with stable RGL1 overexpression and SW480 cells with RGL1 knockdown were established using lentiviral vecors, and the changes in invasion and migration abilities of the cells were assessed using Transwell invasion and migration assays. The transduced cells were injected into the serosa of the cecum of nude mice, and tumor growth and liver metastasis were observed 8 weeks later. Fibronectin adhesion assays and immunofluorescence experiments were employed to assess the relationship between RGL1 and focal adhesion formation, and co-immuno-precipitation assays were performed to explore the interaction between RGL1 and GTPase activation.
RESULTS:
Compared with non-metastatic CRC, metastatic CRC showed significantly upregulated expression of RGL1. HCT116 cells overexpressing RGL1 exhibited obviously enhanced migration and invasion in vitro with increased capacity for liver metastasis in nude mice. RGL1 overexpression strongly accelerated focal adhesion assembly, facilitated the formation of motile focal adhesions, and enhanced the binding of activated CDC42/RAC1 complex to RGL1.
CONCLUSIONS
RGL1 is highly expressed in metastatic CRC and promotes distant metastasis of CRC by activating the CDC42/RAC1 complex to facilitate the formation of motile focal adhesions. These findings suggest that RGL1 can potentially serve as a therapeutic target for CRC metastasis.
Humans
;
Colorectal Neoplasms/metabolism*
;
cdc42 GTP-Binding Protein/metabolism*
;
Animals
;
Mice, Nude
;
rac1 GTP-Binding Protein/metabolism*
;
Cell Movement
;
Mice
;
Focal Adhesions/metabolism*
;
Neoplasm Metastasis
;
Cell Line, Tumor
;
HCT116 Cells
;
Up-Regulation
;
Neoplasm Invasiveness
;
Adaptor Proteins, Signal Transducing
;
Female
;
Rho Guanine Nucleotide Exchange Factors
3.Neurospecific transmembrane protein 240 colocalizes with peroxisomes and activates Rho GDP dissociation inhibitor β.
Qiongqiong HU ; Wenpei LI ; Lixia XU ; Ruilei GUAN ; Dongya ZHANG ; Jiaojiao JIANG ; Ning WANG ; Gaiqing YANG
Journal of Southern Medical University 2025;45(6):1260-1269
OBJECTIVES:
To investigate the subcellular localization and biological functions of transmembrane protein 240 (TMEM240).
METHODS:
NCBI BLAST and TMHMM bioinformatics software were used for protein sequence analysis and prediction of transmembrane domain of TMEM240. Brain tissues from male C57BL/6 mice (18-20 days old) were examined for distribution of TMEM240 using in situ hybridization, and qPCR and Western blotting were used to detect TMEM240 expression in different mouse tissues and in cortical neurons at different time points (n=3). In the in vitro experiment, HepG2 and Neuro-2a cells were transfected with plasmids for overexpression of TMEM240, and subcellular localization of TMEM240 was analyzed using cell imaging. In primary cultures of cortical neurons isolated from C57BL/6 mice, TMEM240 expression and its biological functions were investigated using qPCR, Western blotting, and immunofluorescence staining.
RESULTS:
Human and mouse TMEM240 proteins share a 97.69% similarity in the protein sequences, and both are transmembrane proteins with two transmembrane domains. TMEM240 mRNA and protein were highly expressed in mouse brain tissues and cortical neurons. In isolated mouse cortical neurons, TMEM240 expression reached the peak level after primary culture for 9 days and distributed in scattered spots within the cells. In HepG2 cells, TMEM240 was characterized as intracellular membrane structures and showed 80% colocalization with peroxisomes. In Neuro-2a cells, TMEM240 overexpression caused significant enhancement of the expressions of Rho GDP dissociation inhibitor β (ARHGDIB) at both the mRNA and protein levels.
CONCLUSIONS
TMEM240 is a novel intracellular subcellular structure specifically expressed in neurons with significant potential for targeted cellular function regulation.
Animals
;
Humans
;
Mice
;
Peroxisomes/metabolism*
;
Membrane Proteins/genetics*
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Male
;
rho-Specific Guanine Nucleotide Dissociation Inhibitors
;
Hep G2 Cells
;
Brain/metabolism*
4.The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products.
Ying ZHENG ; Junxin CHEN ; Ze LIU ; Kaibo WANG ; Hao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):815-823
The accumulation of deoxyribonucleic acid (DNA) oxidative damage mediated by reactive oxygen species (ROS) is closely associated with liver diseases. 8-Oxoguanine (8-OxoG), a prevalent DNA oxidation product, plays a significant role in liver disease progression. The base excision repair (BER) pathway, comprising over 30 proteins including 8-OxoG DNA glycosylase1 (OGG1), MutY homolog (MUTYH), and MutT homolog protein 1 (MTH1), is responsible for the clearance and mismatch repair of 8-OxoG. Abnormally high levels of 8-OxoG and dysregulated expression and function of 8-OxoG repair enzymes contribute to the onset and development of liver diseases. Consequently, targeting the 8-OxoG production and repair system with agonists or inhibitors may offer a promising approach to liver disease treatment. This review summarizes the impact of 8-OxoG accumulation and dysregulated repair enzymes on various liver diseases, including viral liver disease, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), cholestatic liver disease (CLD), liver fibrosis, cirrhosis, and liver cancer. Additionally, we review natural constituents as potential therapeutic agents that regulate 8-OxoG production, repair enzymes, and repair system-related signal pathways in oxidative damage-induced liver diseases.
Humans
;
Liver Diseases/genetics*
;
Biological Products/pharmacology*
;
DNA Repair/drug effects*
;
Guanine/metabolism*
;
Animals
;
Disease Progression
;
DNA Damage
;
Oxidative Stress
5.Progress on the role of Kalirin-7 in exercise intervention-mediated improvement of neurodegenerative diseases.
Acta Physiologica Sinica 2023;75(5):659-670
Guanine nucleotide exchange factor Kalirin-7 (Kal-7) is a key factor in synaptic plasticity and plays an important regulatory role in the brain. Abnormal synaptic function leads to the weakening of cognitive functions such as learning and memory, accompanied by abnormal expression of Kal-7, which in turn induces a variety of neurodegenerative diseases. Exercise can upregulate the expression of Kal-7 in related brain regions to alleviate neurodegenerative diseases. By reviewing the literature on Kal-7 and neurodegenerative diseases, as well as the research progress of exercise intervention, this paper summarizes the role and possible mechanism of Kal-7 in the improvement of neurodegenerative diseases by exercise and provides a new rationale for the basic and clinical research on the prevention and treatment of neurodegenerative diseases by exercise.
Humans
;
Neurodegenerative Diseases/therapy*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Exercise Therapy
6.Pathological study on the relationship between nucleic acid oxidative stress and heart failure with preserved ejection fraction in patients aged over 85 years.
Wan Rong ZHU ; Ke CHAI ; Fang FANG ; Shu Rong HE ; Ying Ying LI ; Ming Hui DU ; Jun Jie LI ; Jie Fu YANG ; Jian Ping CAI ; Hua WANG
Chinese Journal of Cardiology 2023;51(10):1063-1068
Objective: To investigate the level of nucleic acid oxidation in myocardial tissue of patients aged over 85 with heart failure with preserved ejection fraction (HFpEF) and the correlation with myocardial amyloid deposition. Methods: This was a retrospective case-control study. Data of patients≥85 years old who underwent systematic pathological autopsy in Beijing Hospital from 2003 to 2017 were retrospectively collected. Twenty-six patients were included in the HFpEF group and 13 age-and sex-matched patients who had not been diagnosed with heart failure and died of non-cardiovascular diseases served as the control group. The left ventricular myocardium slices of both groups were semi-quantitatively analyzed using immunohistochemical staining of 8-oxidized guanine riboside (8-oxo-G) and 8-oxidized guanine deoxyriboside (8-oxo-dG) to evaluate the oxidation of RNA and DNA in cardiomyocytes. Using the median of the mean absorbance value of 8-oxo-G immunohistochemical staining as the cut-off value, patients were divided into high-absorbance group and low-absorbance group. Congo red staining was used to compare myocardial amyloid deposition between the two groups. Results: The mean age of patients in HFpEF group was (91.8±3.7) years, 24 (92.3%) were males. The mean age of patients in control group was (91.7±3.7) years old, 11 (84.6%) were males. The median mean optical absorbance value of 8-oxo-G immunohistochemical staining of myocardium was significantly higher in HFpEF patients than in control group (0.313 8 (0.302 2, 0.340 6) vs. 0.289 2 (0.276 7, 0.299 4), Z=-3.245, P=0.001). The median mean absorbance value of 8-oxo-dG immunohistochemical staining of myocardial tissue was similar between the two groups (0.300 0 (0.290 0, 0.322 5) vs. 0.300 0 (0.290 0, 0.320 0), Z=-0.454, P=0.661). Proportion of patients with moderate and severe cardiac amyloid deposition was significantly higher in the high-absorbance group than in the low-absorbance group ((85.0%, 17/20) vs. (31.6%, 6/19), P=0.001). Conclusion: The RNA oxidation degree of myocardium in HFpEF patients is higher than that in elderly people without heart failure. Degree of myocardial amyloid deposits is higher in patients with high levels of RNA oxidation.
Aged
;
Male
;
Humans
;
Aged, 80 and over
;
Female
;
Heart Failure/pathology*
;
Retrospective Studies
;
Stroke Volume
;
Case-Control Studies
;
Nucleic Acids
;
8-Hydroxy-2'-Deoxyguanosine
;
Myocytes, Cardiac/pathology*
;
RNA
;
Oxidative Stress
;
Guanine
;
Ventricular Function, Left
7.Pathological study on the relationship between nucleic acid oxidative stress and heart failure with preserved ejection fraction in patients aged over 85 years.
Wan Rong ZHU ; Ke CHAI ; Fang FANG ; Shu Rong HE ; Ying Ying LI ; Ming Hui DU ; Jun Jie LI ; Jie Fu YANG ; Jian Ping CAI ; Hua WANG
Chinese Journal of Cardiology 2023;51(10):1063-1068
Objective: To investigate the level of nucleic acid oxidation in myocardial tissue of patients aged over 85 with heart failure with preserved ejection fraction (HFpEF) and the correlation with myocardial amyloid deposition. Methods: This was a retrospective case-control study. Data of patients≥85 years old who underwent systematic pathological autopsy in Beijing Hospital from 2003 to 2017 were retrospectively collected. Twenty-six patients were included in the HFpEF group and 13 age-and sex-matched patients who had not been diagnosed with heart failure and died of non-cardiovascular diseases served as the control group. The left ventricular myocardium slices of both groups were semi-quantitatively analyzed using immunohistochemical staining of 8-oxidized guanine riboside (8-oxo-G) and 8-oxidized guanine deoxyriboside (8-oxo-dG) to evaluate the oxidation of RNA and DNA in cardiomyocytes. Using the median of the mean absorbance value of 8-oxo-G immunohistochemical staining as the cut-off value, patients were divided into high-absorbance group and low-absorbance group. Congo red staining was used to compare myocardial amyloid deposition between the two groups. Results: The mean age of patients in HFpEF group was (91.8±3.7) years, 24 (92.3%) were males. The mean age of patients in control group was (91.7±3.7) years old, 11 (84.6%) were males. The median mean optical absorbance value of 8-oxo-G immunohistochemical staining of myocardium was significantly higher in HFpEF patients than in control group (0.313 8 (0.302 2, 0.340 6) vs. 0.289 2 (0.276 7, 0.299 4), Z=-3.245, P=0.001). The median mean absorbance value of 8-oxo-dG immunohistochemical staining of myocardial tissue was similar between the two groups (0.300 0 (0.290 0, 0.322 5) vs. 0.300 0 (0.290 0, 0.320 0), Z=-0.454, P=0.661). Proportion of patients with moderate and severe cardiac amyloid deposition was significantly higher in the high-absorbance group than in the low-absorbance group ((85.0%, 17/20) vs. (31.6%, 6/19), P=0.001). Conclusion: The RNA oxidation degree of myocardium in HFpEF patients is higher than that in elderly people without heart failure. Degree of myocardial amyloid deposits is higher in patients with high levels of RNA oxidation.
Aged
;
Male
;
Humans
;
Aged, 80 and over
;
Female
;
Heart Failure/pathology*
;
Retrospective Studies
;
Stroke Volume
;
Case-Control Studies
;
Nucleic Acids
;
8-Hydroxy-2'-Deoxyguanosine
;
Myocytes, Cardiac/pathology*
;
RNA
;
Oxidative Stress
;
Guanine
;
Ventricular Function, Left
8.Single-copy Loss of Rho Guanine Nucleotide Exchange Factor 10 ( arhgef10) Causes Locomotor Abnormalities in Zebrafish Larvae.
Yi ZHANG ; Ming Xing AN ; Chen GONG ; Yang Yang LI ; Yu Tong WANG ; Meng LIN ; Rong LI ; Chan TIAN
Biomedical and Environmental Sciences 2022;35(1):35-44
OBJECTIVE:
To determine if ARHGEF10 has a haploinsufficient effect and provide evidence to evaluate the severity, if any, during prenatal consultation.
METHODS:
Zebrafish was used as a model for generating mutant. The pattern of arhgef10 expression in the early stages of zebrafish development was observed using whole-mount in situ hybridization (WISH). CRISPR/Cas9 was applied to generate a zebrafish model with a single-copy or homozygous arhgef10 deletion. Activity and light/dark tests were performed in arhgef10 -/-, arhgef10 +/-, and wild-type zebrafish larvae. ARHGEF10 was knocked down using small interferon RNA (siRNA) in the SH-SY5Y cell line, and cell proliferation and apoptosis were determined using the CCK-8 assay and Annexin V/PI staining, respectively.
RESULTS:
WISH showed that during zebrafish embryonic development arhgef10 was expressed in the midbrain and hindbrain at 36-72 h post-fertilization (hpf) and in the hemopoietic system at 36-48 hpf. The zebrafish larvae with single-copy and homozygous arhgef10 deletions had lower exercise capacity and poorer responses to environmental changes compared to wild-type zebrafish larvae. Moreover, arhgef10 -/- zebrafish had more severe symptoms than arhgef10 +/- zebrafish. Knockdown of ARHGEF10 in human neuroblastoma cells led to decreased cell proliferation and increased cell apoptosis.
CONCLUSION
Based on our findings, ARHGEF10 appeared to have a haploinsufficiency effect.
Animals
;
Annexin A5
;
Apoptosis
;
Blotting, Western
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Flow Cytometry
;
Genotype
;
Humans
;
In Situ Hybridization
;
Larva/physiology*
;
Phenotype
;
RNA/isolation & purification*
;
Real-Time Polymerase Chain Reaction/standards*
;
Rho Guanine Nucleotide Exchange Factors/metabolism*
;
Sincalide/analysis*
;
Spectrophotometry/methods*
;
Zebrafish/physiology*
9.Unsupervised deep learning for identifying the O 6-carboxymethyl guanine by nanopore sequencing.
Xiaoyu GUAN ; Yu WANG ; Jinyue ZHANG ; Wei SHAO ; Shuo HUANG ; Daoqiang ZHANG
Journal of Biomedical Engineering 2022;39(1):139-148
O 6-carboxymethyl guanine(O 6-CMG) is a highly mutagenic alkylation product of DNA that causes gastrointestinal cancer in organisms. Existing studies used mutant Mycobacterium smegmatis porin A (MspA) nanopore assisted by Phi29 DNA polymerase to localize it. Recently, machine learning technology has been widely used in the analysis of nanopore sequencing data. But the machine learning always need a large number of data labels that have brought extra work burden to researchers, which greatly affects its practicability. Accordingly, this paper proposes a nano-Unsupervised-Deep-Learning method (nano-UDL) based on an unsupervised clustering algorithm to identify methylation events in nanopore data automatically. Specially, nano-UDL first uses the deep AutoEncoder to extract features from the nanopore dataset and then applies the MeanShift clustering algorithm to classify data. Besides, nano-UDL can extract the optimal features for clustering by joint optimizing the clustering loss and reconstruction loss. Experimental results demonstrate that nano-UDL has relatively accurate recognition accuracy on the O 6-CMG dataset and can accurately identify all sequence segments containing O 6-CMG. In order to further verify the robustness of nano-UDL, hyperparameter sensitivity verification and ablation experiments were carried out in this paper. Using machine learning to analyze nanopore data can effectively reduce the additional cost of manual data analysis, which is significant for many biological studies, including genome sequencing.
Deep Learning
;
Guanine
;
Nanopore Sequencing
;
Nanopores
;
Porins/genetics*
10.Analysis of IQSEC2 gene variant in a child with X-linked mental retardation.
Jianbo ZHAO ; Xinying YANG ; Jiuwei LI ; Hongmei WANG ; Weihua ZHANG ; Fang FANG
Chinese Journal of Medical Genetics 2022;39(4):421-424
OBJECTIVE:
To analyze the clinical phenotype and genetic variants of a child with X-linked mental retardation caused by IQSEC2 gene mutation, and provide reference for the diagnosis of the disease.
METHODS:
The child was subjected to next generation sequencing (NGS), and the diagnosis was made by taking consideration of her clinical characteristics.
RESULTS:
The child has presented with global developmental delay, particularly in fine motor skill and language development, in addition with intellectual disability. Genetic testing revealed that she has harbored a heterozygous c.1861dup variant of the IQSEC2 gene, which was not detected in either parent.
CONCLUSION
The de novo c.186ldup variant of the IQSEC2 gene probably underlay the X-linked mental retardation in this child. Above finding has, expanded the spectrum of IQSEC2 gene mutations and provide a basis for the diagnosis of similar cases.
Female
;
Guanine Nucleotide Exchange Factors/genetics*
;
Heterozygote
;
Humans
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/genetics*
;
Mutation
;
Phenotype

Result Analysis
Print
Save
E-mail