1.Mechanism of Maxiong Powder in inhibiting Epac1-Piezo2 signaling pathway in medial habenular nucleus-interpeduncular nucleus of rats with neuropathic pain.
Xin-Yuan WANG ; Zhi CHEN ; Ying LIU ; Jian SUN ; Ru-Jie LI ; Zhi-Guo WANG ; Mei-Yu ZHANG
China Journal of Chinese Materia Medica 2025;50(10):2719-2729
Central sensitization(CS) is an important factor in inducing neuropathic pain(NPP), and the association between signal transduction protein 1(Epac1) and piezoelectric type mechanosensitive ion channel component 2(Piezo2) is a new and significant pathway for initiating CS. This study whether the central analgesic effect of Maxiong Powder is achieved through the synchronized regulation of the Epac1-Piezo2 signaling pathway in the medial habenular nucleus(MHb) and interpeduncular nucleus(IPN) of the brain. Dynamic in vivo microdialysis, combined with high-performance liquid chromatography-fluorescence detection(HPLC-RFC), behavioral assessments, immunohistochemistry, Western blot, and quantitative reverse transcription PCR, were employed in rats with partial sciatic nerve injury(SNI) to investigate the distribution and expression of Epac1 and Piezo2 proteins and genes in the MHb and IPN regions, and the changes in the extracellular levels of glutamate(Glu), aspartic acid(Asp), and glycine(Gly). Compared with the sham group, rats in the SNI group showed significantly reduced analgesic activity, a significant increase in cold pain sensitivity scores, and elevated Glu levels in the MHb and IPN regions. Additionally, the number of Piezo2-positive cells in these regions, as well as the expression levels of Epac1 and Piezo2 proteins and genes, were significantly increased. Compared with the SNI group, after Maxiong Powder administration, the analgesic activity in rats significantly increased, and cold pain sensitivity scores were significantly reduced. Maxiong Powder also significantly decreased the Glu content in the MHb and IPN regions and the Gly content in the MHb region, while significantly increasing the Asp content in both regions. Furthermore, Maxiong Powder significantly reduced the number of Piezo2-positive cells and lowered the protein and gene expression levels of Epac1 and Piezo2 in both brain regions. The central analgesic effect of Maxiong Powder may be related to its inhibition of Glu and Gly release in the extracellular fluid of the MHb and IPN regions, the increase of Asp levels in these regions, and the regulation of the Epac1-Piezo2 pathway through the reduction of Epac1 and Piezo2 protein and gene expression. These results provide partial scientific evidence for the clinical analgesic efficacy of Maxiong Powder and offer new ideas and approaches for the clinical treatment of NPP.
Animals
;
Neuralgia/genetics*
;
Rats
;
Signal Transduction/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Guanine Nucleotide Exchange Factors/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Habenula/drug effects*
;
Ion Channels/genetics*
;
Humans
2.RGL1 overexpression promotes metastasis of colorectal cancer by upregulating motile focal adhesion assembly via activating the CDC42/RAC1 complex.
Nuozhou WENG ; Bin TAN ; Wentao ZENG ; Jiayu GU ; Lianji WENG ; Kehong ZHENG
Journal of Southern Medical University 2025;45(5):1031-1038
OBJECTIVES:
To investigate the regulatory role of Ral guanine nucleotide dissociation stimulator-like 1 (RGL1) in metastasis of colorectal cancer (CRC).
METHODS:
We analyzed the differential expression of RGL1 between metastatic and non-metastatic CRC in GEO database, and examined its expression in 25 patients with metastatic CRC and 25 patients with non-metastatic CRC treated in Zhujiang Hospital between January, 2020 and December, 2022 using quantitative PCR (qPCR) and immunohistochemistry. HCT116 cell lines with stable RGL1 overexpression and SW480 cells with RGL1 knockdown were established using lentiviral vecors, and the changes in invasion and migration abilities of the cells were assessed using Transwell invasion and migration assays. The transduced cells were injected into the serosa of the cecum of nude mice, and tumor growth and liver metastasis were observed 8 weeks later. Fibronectin adhesion assays and immunofluorescence experiments were employed to assess the relationship between RGL1 and focal adhesion formation, and co-immuno-precipitation assays were performed to explore the interaction between RGL1 and GTPase activation.
RESULTS:
Compared with non-metastatic CRC, metastatic CRC showed significantly upregulated expression of RGL1. HCT116 cells overexpressing RGL1 exhibited obviously enhanced migration and invasion in vitro with increased capacity for liver metastasis in nude mice. RGL1 overexpression strongly accelerated focal adhesion assembly, facilitated the formation of motile focal adhesions, and enhanced the binding of activated CDC42/RAC1 complex to RGL1.
CONCLUSIONS
RGL1 is highly expressed in metastatic CRC and promotes distant metastasis of CRC by activating the CDC42/RAC1 complex to facilitate the formation of motile focal adhesions. These findings suggest that RGL1 can potentially serve as a therapeutic target for CRC metastasis.
Humans
;
Colorectal Neoplasms/metabolism*
;
cdc42 GTP-Binding Protein/metabolism*
;
Animals
;
Mice, Nude
;
rac1 GTP-Binding Protein/metabolism*
;
Cell Movement
;
Mice
;
Focal Adhesions/metabolism*
;
Neoplasm Metastasis
;
Cell Line, Tumor
;
HCT116 Cells
;
Up-Regulation
;
Neoplasm Invasiveness
;
Adaptor Proteins, Signal Transducing
;
Female
;
Rho Guanine Nucleotide Exchange Factors
3.Neurospecific transmembrane protein 240 colocalizes with peroxisomes and activates Rho GDP dissociation inhibitor β.
Qiongqiong HU ; Wenpei LI ; Lixia XU ; Ruilei GUAN ; Dongya ZHANG ; Jiaojiao JIANG ; Ning WANG ; Gaiqing YANG
Journal of Southern Medical University 2025;45(6):1260-1269
OBJECTIVES:
To investigate the subcellular localization and biological functions of transmembrane protein 240 (TMEM240).
METHODS:
NCBI BLAST and TMHMM bioinformatics software were used for protein sequence analysis and prediction of transmembrane domain of TMEM240. Brain tissues from male C57BL/6 mice (18-20 days old) were examined for distribution of TMEM240 using in situ hybridization, and qPCR and Western blotting were used to detect TMEM240 expression in different mouse tissues and in cortical neurons at different time points (n=3). In the in vitro experiment, HepG2 and Neuro-2a cells were transfected with plasmids for overexpression of TMEM240, and subcellular localization of TMEM240 was analyzed using cell imaging. In primary cultures of cortical neurons isolated from C57BL/6 mice, TMEM240 expression and its biological functions were investigated using qPCR, Western blotting, and immunofluorescence staining.
RESULTS:
Human and mouse TMEM240 proteins share a 97.69% similarity in the protein sequences, and both are transmembrane proteins with two transmembrane domains. TMEM240 mRNA and protein were highly expressed in mouse brain tissues and cortical neurons. In isolated mouse cortical neurons, TMEM240 expression reached the peak level after primary culture for 9 days and distributed in scattered spots within the cells. In HepG2 cells, TMEM240 was characterized as intracellular membrane structures and showed 80% colocalization with peroxisomes. In Neuro-2a cells, TMEM240 overexpression caused significant enhancement of the expressions of Rho GDP dissociation inhibitor β (ARHGDIB) at both the mRNA and protein levels.
CONCLUSIONS
TMEM240 is a novel intracellular subcellular structure specifically expressed in neurons with significant potential for targeted cellular function regulation.
Animals
;
Humans
;
Mice
;
Peroxisomes/metabolism*
;
Membrane Proteins/genetics*
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Male
;
rho-Specific Guanine Nucleotide Dissociation Inhibitors
;
Hep G2 Cells
;
Brain/metabolism*
4.The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products.
Ying ZHENG ; Junxin CHEN ; Ze LIU ; Kaibo WANG ; Hao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):815-823
The accumulation of deoxyribonucleic acid (DNA) oxidative damage mediated by reactive oxygen species (ROS) is closely associated with liver diseases. 8-Oxoguanine (8-OxoG), a prevalent DNA oxidation product, plays a significant role in liver disease progression. The base excision repair (BER) pathway, comprising over 30 proteins including 8-OxoG DNA glycosylase1 (OGG1), MutY homolog (MUTYH), and MutT homolog protein 1 (MTH1), is responsible for the clearance and mismatch repair of 8-OxoG. Abnormally high levels of 8-OxoG and dysregulated expression and function of 8-OxoG repair enzymes contribute to the onset and development of liver diseases. Consequently, targeting the 8-OxoG production and repair system with agonists or inhibitors may offer a promising approach to liver disease treatment. This review summarizes the impact of 8-OxoG accumulation and dysregulated repair enzymes on various liver diseases, including viral liver disease, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), cholestatic liver disease (CLD), liver fibrosis, cirrhosis, and liver cancer. Additionally, we review natural constituents as potential therapeutic agents that regulate 8-OxoG production, repair enzymes, and repair system-related signal pathways in oxidative damage-induced liver diseases.
Humans
;
Liver Diseases/genetics*
;
Biological Products/pharmacology*
;
DNA Repair/drug effects*
;
Guanine/metabolism*
;
Animals
;
Disease Progression
;
DNA Damage
;
Oxidative Stress
5.Progress on the role of Kalirin-7 in exercise intervention-mediated improvement of neurodegenerative diseases.
Acta Physiologica Sinica 2023;75(5):659-670
Guanine nucleotide exchange factor Kalirin-7 (Kal-7) is a key factor in synaptic plasticity and plays an important regulatory role in the brain. Abnormal synaptic function leads to the weakening of cognitive functions such as learning and memory, accompanied by abnormal expression of Kal-7, which in turn induces a variety of neurodegenerative diseases. Exercise can upregulate the expression of Kal-7 in related brain regions to alleviate neurodegenerative diseases. By reviewing the literature on Kal-7 and neurodegenerative diseases, as well as the research progress of exercise intervention, this paper summarizes the role and possible mechanism of Kal-7 in the improvement of neurodegenerative diseases by exercise and provides a new rationale for the basic and clinical research on the prevention and treatment of neurodegenerative diseases by exercise.
Humans
;
Neurodegenerative Diseases/therapy*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Exercise Therapy
6.Pathological study on the relationship between nucleic acid oxidative stress and heart failure with preserved ejection fraction in patients aged over 85 years.
Wan Rong ZHU ; Ke CHAI ; Fang FANG ; Shu Rong HE ; Ying Ying LI ; Ming Hui DU ; Jun Jie LI ; Jie Fu YANG ; Jian Ping CAI ; Hua WANG
Chinese Journal of Cardiology 2023;51(10):1063-1068
Objective: To investigate the level of nucleic acid oxidation in myocardial tissue of patients aged over 85 with heart failure with preserved ejection fraction (HFpEF) and the correlation with myocardial amyloid deposition. Methods: This was a retrospective case-control study. Data of patients≥85 years old who underwent systematic pathological autopsy in Beijing Hospital from 2003 to 2017 were retrospectively collected. Twenty-six patients were included in the HFpEF group and 13 age-and sex-matched patients who had not been diagnosed with heart failure and died of non-cardiovascular diseases served as the control group. The left ventricular myocardium slices of both groups were semi-quantitatively analyzed using immunohistochemical staining of 8-oxidized guanine riboside (8-oxo-G) and 8-oxidized guanine deoxyriboside (8-oxo-dG) to evaluate the oxidation of RNA and DNA in cardiomyocytes. Using the median of the mean absorbance value of 8-oxo-G immunohistochemical staining as the cut-off value, patients were divided into high-absorbance group and low-absorbance group. Congo red staining was used to compare myocardial amyloid deposition between the two groups. Results: The mean age of patients in HFpEF group was (91.8±3.7) years, 24 (92.3%) were males. The mean age of patients in control group was (91.7±3.7) years old, 11 (84.6%) were males. The median mean optical absorbance value of 8-oxo-G immunohistochemical staining of myocardium was significantly higher in HFpEF patients than in control group (0.313 8 (0.302 2, 0.340 6) vs. 0.289 2 (0.276 7, 0.299 4), Z=-3.245, P=0.001). The median mean absorbance value of 8-oxo-dG immunohistochemical staining of myocardial tissue was similar between the two groups (0.300 0 (0.290 0, 0.322 5) vs. 0.300 0 (0.290 0, 0.320 0), Z=-0.454, P=0.661). Proportion of patients with moderate and severe cardiac amyloid deposition was significantly higher in the high-absorbance group than in the low-absorbance group ((85.0%, 17/20) vs. (31.6%, 6/19), P=0.001). Conclusion: The RNA oxidation degree of myocardium in HFpEF patients is higher than that in elderly people without heart failure. Degree of myocardial amyloid deposits is higher in patients with high levels of RNA oxidation.
Aged
;
Male
;
Humans
;
Aged, 80 and over
;
Female
;
Heart Failure/pathology*
;
Retrospective Studies
;
Stroke Volume
;
Case-Control Studies
;
Nucleic Acids
;
8-Hydroxy-2'-Deoxyguanosine
;
Myocytes, Cardiac/pathology*
;
RNA
;
Oxidative Stress
;
Guanine
;
Ventricular Function, Left
7.Pathological study on the relationship between nucleic acid oxidative stress and heart failure with preserved ejection fraction in patients aged over 85 years.
Wan Rong ZHU ; Ke CHAI ; Fang FANG ; Shu Rong HE ; Ying Ying LI ; Ming Hui DU ; Jun Jie LI ; Jie Fu YANG ; Jian Ping CAI ; Hua WANG
Chinese Journal of Cardiology 2023;51(10):1063-1068
Objective: To investigate the level of nucleic acid oxidation in myocardial tissue of patients aged over 85 with heart failure with preserved ejection fraction (HFpEF) and the correlation with myocardial amyloid deposition. Methods: This was a retrospective case-control study. Data of patients≥85 years old who underwent systematic pathological autopsy in Beijing Hospital from 2003 to 2017 were retrospectively collected. Twenty-six patients were included in the HFpEF group and 13 age-and sex-matched patients who had not been diagnosed with heart failure and died of non-cardiovascular diseases served as the control group. The left ventricular myocardium slices of both groups were semi-quantitatively analyzed using immunohistochemical staining of 8-oxidized guanine riboside (8-oxo-G) and 8-oxidized guanine deoxyriboside (8-oxo-dG) to evaluate the oxidation of RNA and DNA in cardiomyocytes. Using the median of the mean absorbance value of 8-oxo-G immunohistochemical staining as the cut-off value, patients were divided into high-absorbance group and low-absorbance group. Congo red staining was used to compare myocardial amyloid deposition between the two groups. Results: The mean age of patients in HFpEF group was (91.8±3.7) years, 24 (92.3%) were males. The mean age of patients in control group was (91.7±3.7) years old, 11 (84.6%) were males. The median mean optical absorbance value of 8-oxo-G immunohistochemical staining of myocardium was significantly higher in HFpEF patients than in control group (0.313 8 (0.302 2, 0.340 6) vs. 0.289 2 (0.276 7, 0.299 4), Z=-3.245, P=0.001). The median mean absorbance value of 8-oxo-dG immunohistochemical staining of myocardial tissue was similar between the two groups (0.300 0 (0.290 0, 0.322 5) vs. 0.300 0 (0.290 0, 0.320 0), Z=-0.454, P=0.661). Proportion of patients with moderate and severe cardiac amyloid deposition was significantly higher in the high-absorbance group than in the low-absorbance group ((85.0%, 17/20) vs. (31.6%, 6/19), P=0.001). Conclusion: The RNA oxidation degree of myocardium in HFpEF patients is higher than that in elderly people without heart failure. Degree of myocardial amyloid deposits is higher in patients with high levels of RNA oxidation.
Aged
;
Male
;
Humans
;
Aged, 80 and over
;
Female
;
Heart Failure/pathology*
;
Retrospective Studies
;
Stroke Volume
;
Case-Control Studies
;
Nucleic Acids
;
8-Hydroxy-2'-Deoxyguanosine
;
Myocytes, Cardiac/pathology*
;
RNA
;
Oxidative Stress
;
Guanine
;
Ventricular Function, Left
8.Clinical analysis of early-onset infantile epileptic encephalopathy associated with synonymous variant of the ARHGEF9 gene.
Yanping LIU ; Liu YANG ; Tingting LI ; Ruiming CAO ; Chunming REN ; Xiang LEI
Chinese Journal of Medical Genetics 2022;39(10):1145-1148
OBJECTIVE:
To explore the clinical characteristics of a child with early-onset infantile epileptic encephalopathy type 8 associated with synonymous variant of ARHGEF9 gene.
METHODS:
Clinical data of the patient was summarized. The child and his parents were subjected to trio-whole exome sequencing.
RESULTS:
The child has presented with global developmental delay, epilepsy, impulsive behavior, hypersensitivity to sound, and mental retardation. He was found to harbor a de novo synonymous variant c.741C>T (p.Cys247Cys) of the ARHGEF9 gene. RNA splicing analysis confirmed that the variant has led to abnormal splicing of exon 5, resulting in a 55-bp deletion.
CONCLUSION
The clinical features of ARHGEF9 gene-related early-onset infantile epileptic encephalopathy type 8 includes mental and motor developmental delay, epilepsy, auditory allergy, and hyperactivity impulsivity. For synonymous variant, in vitro study and transcriptional experiment may be carried out to evaluate its functional and splicing effect. Above finding has enriched the phenotypic and genotypic spectrum of the ARHGEF9 gene.
Child
;
Epilepsy/genetics*
;
Exons
;
Humans
;
Infant
;
Intellectual Disability/genetics*
;
Male
;
Rho Guanine Nucleotide Exchange Factors/genetics*
;
Spasms, Infantile/genetics*
9.Genotypes and phenotypes of IQSEC2 gene variants related epilepsy.
Dian Hui WANG ; Xue Yang NIU ; Miao Miao CHENG ; Yi CHEN ; Ying YANG ; Xiao Ling YANG ; Zhi Xian YANG ; Yue Hua ZHANG
Chinese Journal of Pediatrics 2022;60(12):1317-1321
Objective: To analyze the genotypes and clinical phenotypes of patients with epilepsy associated with IQSEC2 gene variants. Methods: The genotypes, seizure types, electroencephalogram, neuroimage of 6 patients with IQSEC2 gene variants in the Department of Pediatrics, Peking University First Hospital from July 2019 to October 2021 were analyzed. Results: There were 5 males and 1 female. Six variants were de novo, including 2 frameshift variants (c.3801_3808dup/p.Q1270Rfs*130, c.1459_1460delAT/p.M487Vfs*2), 2 nonsense variants (c.3163C>T/p.R1055*, c.1417G>T/p.E473*), 1 in-frame deletion (c.2295_2297del/p.N765del) and 1 missense variant (c.2293A>G/p.N765D). Age at seizure onset ranged from 3 months to 2 years and 5 months. Multiple seizure types were observed, including epileptic spasms in 5 patients, focal seizures in 5 patients, tonic seizures in 3 patients, myoclonic seizures in 3 patients, atypical absence seizures in 2 patients and atonic seizures in 2 patients. All 6 patients showed global developmental delay before seizure onset. There were other clinical manifestations, including autistic features in 3 patients, microcephaly in 3 patients, dystonia in 2 patients and binocular esotropia in 1 patient. The electroencephalogram showed slow background activity and hypsarrhythmia in all 6 patients. Brain magnetic resonance imaging showed abnormal in 5 patients and normal in 1 patient. Five patients were diagnosed with infantile spasms. Among them, 4 patients had late-onset infantile spasms. One patient was unclassified developmental epileptic encephalopathy. The age of last follow-up ranged from 3 years and 2 months to 7 years and 2 months. All 6 patients still had seizures after multiple anti-seizure medications. Conclusions: The seizure onset of patients with IQSEC2 gene variants usually begins after 1 year of age. The common seizure types include epileptic spasms and focal seizures. Patients usually have a global developmental delay before seizure onset. IQSEC2 variants could be related to developmental and epileptic encephalopathy, and most patients are diagnosed with late onset infantile spasms. Epilepsy associated with IQSEC2 gene variants is usually refractory.
Female
;
Male
;
Child
;
Humans
;
Spasms, Infantile/genetics*
;
Genotype
;
Phenotype
;
Epilepsy/genetics*
;
Seizures
;
Spasm
;
Guanine Nucleotide Exchange Factors
10.GNB2L1 gene expression and clinical value in hepatocellular carcinoma based on bioinformatics.
Ling Yan FAN ; Chun Li SUN ; Yu Han CHEN ; Guo Sheng GAO
Chinese Journal of Hepatology 2022;30(9):954-961
Objective: To analyze guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1) expression based on bioinformatics, so as to evaluate its role and its relationship with survival rate during the occurrence and development of hepatocellular carcinoma. Methods: GEPIA, UALCAN and HPA databases were used to analyze the expression level of GNB2L1 and its relationship with HCC survival rate. Mutations in the GNB2L1 gene and their impact on survival were analyzed using the cBioPortal database. LinkedOmics database was used to analyze GNB2L1-related genes in HCC. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed simultaneously. STEING database was used to construct the GNB2L1 protein interaction network. TIMER database was used to analyze the relationship between GNB2L1 gene expression and immune infiltration in hepatocellular carcinoma. Differential expression of GNB2L1 in plasma platelets of HCC patients and healthy controls was analyzed using mRNA-based sequencing technology. Data between groups were compared using an independent-samples t-test. Results: GNB2L1 expression level was significantly increased in HCC tissues (P<0.05), and its expression was significantly correlated with body weight, classification and stage (P<0.05). The overall survival rate was higher in GNB2L1 low expression group (P<0.001). GNB2L1 and its related genes were related to biological process regulation, metabolic process, protein binding, oxidative phosphorylation, JAK-STAT signaling pathway, Ras signaling pathway and so on. GNB2L1 had interaction with RPS12, RPS11 and RPL19, and participated in multiple biological processes such as liver regeneration and positive regulation of endogenous apoptotic signaling pathway. GNB2L1 expression was significantly positively correlated with the infiltration degree of various immune cells in HCC (P<0.05). Cox regression analysis showed that GNB2L1 was an independent risk factor for lower survival rate in patients with HCC [Hazard ratio (95% confidence interval)=1.456 (1.034~2.051), P=0.031]. GNB2L1expression levels were significantly higher in platelets of HCC patients than that of healthy controls (10.40±1.36 vs. 9.58±0.51, t=2.194, P=0.037). Conclusion: GNB2L1 has high expression and close relationship to survival rate in HCC. Therefore, GNB2L1 may be a potential biomarker of HCC.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Computational Biology
;
Liver Neoplasms/pathology*
;
Protein Subunits/metabolism*
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger
;
Guanine Nucleotides
;
Gene Expression
;
Biomarkers, Tumor/genetics*

Result Analysis
Print
Save
E-mail