1.Traditional Chinese Medicine Intervention in Diarrhea-predominant Irritable Bowel Syndrome Based on Gut-brain Axis: A Review
Jinchan PENG ; Jinxiu WEI ; Zhu LIU ; Lijian LIU ; Liqun LI ; Chengning YANG ; Guangwen CHEN ; Jianfeng LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):311-319
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common digestive system disease with high prevalence and recurrence rates for years, high treatment costs, and serious impacts on patients' quality of life and economic burden. Therefore, it is important to explore new and safe treatment methods. The pathogenesis of IBS-D is complex, in which the gut-brain axis is a key factor. The gut-brain axis, a bidirectional signaling pathway connecting the gastrointestinal tract and the central nervous system, regulates gastrointestinal motility, secretion, and immune responses, playing a key role in the occurrence and development of IBS-D. Up to now, antidiarrheal agents, probiotics, and neurotransmitter modulators are the main methods for the clinical treatment of IBS-D. Although they can partially curb the progression of this disease, the therapeutic effects remain to be improved. Studies have confirmed that traditional Chinese medicine (TCM) has significant advantages in the treatment of IBS-D since it can regulate the gut-brain axis via multiple pathways and targets to improve the gastrointestinal motility and strengthen immune defenses. However, there is a lack of systematic reviews on the regulation of the gut-brain axis by TCM in the treatment of IBS-D. Based on the review of IBS-D-related articles published in recent years, this paper systematically summarized the relationship between the gut-brain axis and IBS-D and the role of TCM in the treatment, providing new ideas for the treatment of IBS-D.
2.Effects of microstructured bone implant material surfaces on osteogenic function of MC3T3-E1 osteoblasts
Liping HUANG ; Hui LI ; Xinge WANG ; Rui WANG ; Bei CHANG ; Shiting LI ; Xiaorong LAN ; Guangwen LI
Chinese Journal of Tissue Engineering Research 2025;29(10):1990-1996
BACKGROUND:The micro/nanostructured gradient biomimetic surface of implant materials can simulate the structure of the extracellular environment in human bone tissue,thereby achieving perfect bone integration function.However,further research is needed on the mechanisms by which the surface microstructure of bone implant materials regulates cell function and promotes osteogenesis. OBJECTIVE:To analyze the effect of titanium sheet microstructure surface on osteogenic differentiation of MC3T3-E1 osteoblasts. METHODS:(1)At a constant voltage of 5 V or 20 V,nanotube arrays of different diameters were prepared on the surface of titanium sheets by acid etching and anodic oxidation techniques,and were recorded as group R5 and group R20,respectively.The surface morphology,roughness,and hydrophilicity of pure titanium sheet(without acid etching or anodizing treatment)were measured in group R5 and group R20.(2)MC3T3-E1 osteoblasts of logarithmic growth stage were inoculated on the surface of pure titanium sheets,R5 group and R20 group respectively.After 24 hours of osteogenic induction culture,the expression of mechanical sensitive channel protein 1 was analyzed by RT-PCR and immunofluorescence staining.Osteoblast inducible base with or without the mechanosensitive channel protein 1 activator Yada1 was added,and alkaline phosphatase staining was performed after 7 days of culture.Alizarin red staining was performed after 14 days of culture. RESULTS AND CONCLUSION:(1)The surface of pure titanium sheets was smooth under scanning electron microscope.Relatively uniform and orderly nanotube arrays with average diameters of about 30 nm and 100 nm were observed on the surface of titanium sheets of groups R5 and R20,respectively.The results of scanning electron microscope were further verified by atomic force microscopy.The surface roughness of titanium sheet of group R5 was higher than that of pure titanium(P<0.05),and the water contact angle was lower than that of pure titanium(P<0.05).The surface roughness of titanium sheet in group R20 was higher than that in group R5(P<0.05),and the water contact angle was lower than that in group R5(P<0.05).(2)RT-PCR and immunofluorescence staining showed that the expression of mechanosensitive channel protein 1 in group R5 was higher than that in pure titanium group(P<0.05),and the expression of mechanosensitive channel protein 1 in group R20 was higher than that in group R5(P<0.05).Under the osteogenic induction,compared with the condition without Yada1,there were no significant changes in the activity of alkaline phosphatase and the deposition of calcified nodules in pure titanium group after Yada1 addition,while the activity of alkaline phosphatase and the deposition of calcified nodules in groups R5 and R20 after Yada1 addition were significantly increased(P<0.05).With or without Yada1,the alkaline phosphatase activity and calcified nodule deposition in group R5 were higher than those in pure titanium group(P<0.05),and the alkaline phosphatase activity and calcified nodule deposition in group R20 were higher than those in group R5(P<0.05).(3)The results show that the surface microstructure of titanium sheet can promote the osteogenic differentiation of osteoblast MC3T3-E1 by activating mechanosensitive channel protein 1.
3.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
4.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
5.Association of Leukemia Incidence and Mortality Rate in 2022 and Human Development Index in Global Countries
Yida HE ; Xiaoqiong ZHU ; Zheng LI ; Donghong LIU ; Guangwen CAO
Cancer Research on Prevention and Treatment 2024;51(10):870-876
Objective To compare the association of the incidence and mortality of leukemia and the human development index(HDI)in different countries or regions in 2022,and the trend of leukemia incidence and mortality with age in countries with different HDI levels.Methods GLOBOCAN 2022 data related to leukemia incidence and mortality in different countries or regions worldwide and HDI were evaluated by Pearson correlation analysis and Kruskal-Wallis test.The incidence and mortality rates of each age and the age change trend were analyzed using the Joinpoint Regression model.Results Age-standardized incidence rate(ASIR),age-standardized mortality rate(ASMR),and mortality to incidence ratio(M/I)were statistically significantly different among the four groups of HDI countries(P<0.001).HDI was positively correlated with ASIR and ASMR and negatively correlated with M/I.Among all ages,ASIR and ASMR of leukemia of the four groups had similar trends with age,and the risk of leukemia was high at ages less than 15 and more than 40.The incidence of leukemia in all age groups in China differed from those in other countries with high HDI,while the mortality rate was lower than those in other countries with high HDI.Conclusion Countries or regions with higher HDI have higher ASIR and ASMR and lower M/I because of their better medical condition.
6.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
7.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
8.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
9.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
10.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.

Result Analysis
Print
Save
E-mail