1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.6-Week Caloric Restriction Improves Lipopolysaccharide-induced Septic Cardiomyopathy by Modulating SIRT3
Ming-Chen ZHANG ; Hui ZHANG ; Ting-Ting LI ; Ming-Hua CHEN ; Xiao-Wen WANG ; Zhong-Guang SUN
Progress in Biochemistry and Biophysics 2025;52(7):1878-1889
ObjectiveThe aim of this study was to investigate the prophylactic effects of caloric restriction (CR) on lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) and to elucidate the mechanisms underlying the cardioprotective actions of CR. This research aims to provide innovative strategies and theoretical support for the prevention of SCM. MethodsA total of forty-eight 8-week-old male C57BL/6 mice, weighing between 20-25 g, were randomly assigned to 4 distinct groups, each consisting of 12 mice. The groups were designated as follows: CON (control), LPS, CR, and CR+LPS. Prior to the initiation of the CR protocol, the CR and CR+LPS groups underwent a 2-week acclimatization period during which individual food consumption was measured. The initial week of CR intervention was set at 80% of the baseline intake, followed by a reduction to 60% for the subsequent 5 weeks. After 6-week CR intervention, all 4 groups received an intraperitoneal injection of either normal saline or LPS (10 mg/kg). Twelve hours post-injection, heart function was assessed, and subsequently, heart and blood samples were collected. Serum inflammatory markers were quantified using enzyme-linked immunosorbent assay (ELISA). The serum myocardial enzyme spectrum was analyzed using an automated biochemical instrument. Myocardial tissue sections underwent hematoxylin and eosin (HE) staining and immunofluorescence (IF) staining. Western blot analysis was used to detect the expression of protein in myocardial tissue, including inflammatory markers (TNF-α, IL-9, IL-18), oxidative stress markers (iNOS, SOD2), pro-apoptotic markers (Bax/Bcl-2 ratio, CASP3), and SIRT3/SIRT6. ResultsTwelve hours after LPS injection, there was a significant decrease in ejection fraction (EF) and fractional shortening (FS) ratios, along with a notable increase in left ventricular end-systolic diameter (LVESD). Morphological and serum indicators (AST, LDH, CK, and CK-MB) indicated that LPS injection could induce myocardial structural disorders and myocardial injury. Furthermore, 6-week CR effectively prevented the myocardial injury. LPS injection also significantly increased the circulating inflammatory levels (IL-1β, TNF-α) in mice. IF and Western blot analyses revealed that LPS injection significantly up-regulating the expression of inflammatory-related proteins (TNF-α, IL-9, IL-18), oxidative stress-related proteins (iNOS, SOD2) and apoptotic proteins (Bax/Bcl-2 ratio, CASP3) in myocardial tissue. 6-week CR intervention significantly reduced circulating inflammatory levels and downregulated the expression of inflammatory, oxidative stress-related proteins and pro-apoptotic level in myocardial tissue. Additionally, LPS injection significantly downregulated the expression of SIRT3 and SIRT6 proteins in myocardial tissue, and CR intervention could restore the expression of SIRT3 proteins. ConclusionA 6-week CR could prevent LPS-induced septic cardiomyopathy, including cardiac function decline, myocardial structural damage, inflammation, oxidative stress, and apoptosis. The mechanism may be associated with the regulation of SIRT3 expression in myocardial tissue.
3.The evolution and application progress of non-modified drug target discovery CETSA technology
Guang-yuan LIU ; Ya-hui LI ; Wei ZHANG ; De-zhi KONG
Acta Pharmaceutica Sinica 2024;59(1):25-34
Understanding the research methods for drug protein targets is crucial for the development of new drugs, clinical applications of drugs, drug mechanisms, and the pathogenesis of diseases. Cellular thermal shift assay (CETSA), a target research method without modification, has been widely used since its development. Now, there are various CETSA-based technology combinations, such as mass spectrometry-based cellular thermal shift assay (MS-CETSA), isothermal dose response-cellular thermal shift assay (ITDR-CETSA), amplified luminescent proximity homogeneous assay-cellular thermal shift assay (Alpha-CETSA),
4.Effects of voriconazole on pharmacokinetics of tacrolimus in renal transplantation patients
Dan ZHANG ; Chao WANG ; Guang-Hui PEI ; Yi ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(4):594-597
Objective To explore the effects of oral voriconazole(VRC)on the pharmacokinetics of tacrolimus(TAC)in renal transplant patients.Methods Renal transplant patients who had taken TAC orally for more than 2 days and achieved steady-state plasma concentration before taking VRC.The trough concentration of TAC was measured on the 3rd,5th and 10th days after VRC 200 or 400 mg·d-1 administration.The trough concentration(C0)of TAC was determined by high performance liquid chromatography.The genotypes of TAC were determined by polymerase chain reaction and the pharmacokinetics of TAC after combined use of VRC were compared.Results After the use of VRC,the TAC C0 of 11 renal transplant patients was 3-8 μg·L-1,and the concentration of TAC ranged from 50.00%to 87.50%of the original dose.Additionally,the impact of VRC on TAC varied significantly among individuals.The mean TAC C0 value after VRC administration was significantly higher than the value before VRC[(12.14±3.89)vss(5.20±2.79)μg·L-1].Eleven renal transplant patients were grouped according to cytochrome P450(CYP)2C19-CYP3A5 gene polymorphism,under the condition of combined administration,the C0/dose of TAC in the slow metabolizer group was higher than that in the fast metabolizer group on the 3rd,5th and 10th days[(582.10±252.30)vs(439.03±166.08),(873.71±449.22)vs(666.60±168.00),(852.10±505.73)vs(261.50±81.98)μg·L-1·mg-1·kg;all P<0.01].Conclusion TAC pharmacokinetics was significantly affected by the VRC in renal transplant recipients,and the principle that TAC dose needed to be reduced by one-third of the original dose was no longer applicable,which may be related to the pharmacokinetics of the VRC itself and the gene polymorphism of CYP2C19/CYP3A5 enzyme.It is recommended to regularly monitor the concentration of TAC when VRC and TAC are used in combination.
5.Clinical trial of empagliflozin and linagliptin in the treatment of patients with type 2 diabetes mellitus with heart failure
Guang-Hui CHENG ; Xin-Jun LI ; Ying-Jie LI ; Hui WANG ; Dan-Dan CUI ; Hai-Yang ZHANG ; Zi-Jian WANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1131-1135
Objective To compare the efficacy and safety of empagliflozin and linagliptin in the treatment of patients with type 2 diabetes mellitus(T2DM)with heart failure(HF).Methods Patients with T2DM and HF were randomly into control group and treatment group.Both groups were treated with individualized anti-HF and metformin-based hypoglycemic therapy.On this basis,the control group was given linagliptin orally(5 mg each time,once a day),while the treatment group was given oral administration of empagliflozin 10 mg every day.Patients in both groups were treated continuously for 6 months.The clinical efficacy and blood glucose indicators[fasting blood glucose(FBG),2 h postprandial blood glucose(2 h PBG),hemoglobin A1c(HbA1c)],cardiac molecular markers[N-terminal pro-brain natriuretic peptide(NT-proBNP),fibroblast growth factor 23(FGF23),copeptin(CPP)]and caridac function indicators[left ventricular end-diastolic diameter(LVEDD),left ventricular ejection fraction(LVEF),left ventricular remodeling index(LVRI)]before and after treatment were compared,and the adverse drug reactions were recorded.Results There were 40 cases in treatment group and 40 cases in control group.After treatment,the total effective rates in treatment group and control group were 97.50%(39 cases/40 cases)and 80.00%(32 cases/40 cases),with no significant difference(P<0.05).The FBG levels in treatment group and control group were(7.64±1.18)and(7.83±1.24)mmol·L-1;2 h PBG levels were(8.97±1.46)and(9.04±1.35)mmol·L-1;HbA1c levels were(7.58±1.27)%and(7.65±1.42)%,all with no significant difference(all P>0.05).The NT-proBNP levels in treatment group and control group were(612.53±204.62)and(1 045.24±316.75)pg·mL-1;FGF23 levels were(362.74±62.61)and(493.27±74.64)μg·L-1;CPP levels were(12.58±3.43)and(16.87±4.36)pmol·L-1;LVEDD values were(51.19±2.36)and(53.35±2.24)mm;LVEF values were(52.69±3.38)%and(50.28±3.75)%;LVRI values were(2.62±0.29)and(2.96±0.33)kg·L-1,all with significant difference(all P<0.05).The incidence rates of adverse reactions in treatment group and control group were 5.00%(2 cases/40 cases)and 10.00%(4 cases/40 cases),with no significant difference(P>0.05).Conclusion Both empagliflozin and linagliptin can effectively reduce the blood glucose in patients with T2DM complicated with HF.Empagliflozin can better promote the improvement of cardiac function in patients without significantly increase the incidence of adverse drug reactions.
6.Effects of exosomes secreted by induced pluripotent stem cells on keratinocyte proliferation and migration
Rong-Rong ZHANG ; Xiao-Ling GUO ; Guang-Hui ZHU
The Chinese Journal of Clinical Pharmacology 2024;40(10):1438-1442
Objective To explore the role of exosomes secreted by induced pluripotent stem cells(iPSC)in promoting the proliferation,invasion and migration of keratinocytes,thereby facilitating wound healing.Methods Extract iPSC-Exos and identify them through transmission electron microscopy,nanoparticle tracking analysis technology,and Western blotting.Purified iPSC-Exos labeled with PKH26 were added to keratinocytes(HaCaT)for the determination of keratinocyte uptake of exosomes.The optimal working concentration of exosomes was assessed using cell counting kit-8(CCK-8),and cells were divided into control group(cell scratch),and experimental group(cell scratch followed by addition of exosomes at the optimal working concentration).Proliferation,migration,and invasion abilities of cells in each group were evaluated using CCK-8,5-ethynyl-2'-deoxyuridine(EdU),scratch assay,and Transwell assay.Results iPSC-Exos exhibit a membranous vesicular structure with a round or elliptical shape,and their diameter is(120.00±25.00)nm.The expression of characteristic surface markers CD9,CD63,and CD81 on iPSC-Exos is positive in the experimental group,while being negative in the control group.HaCaT cells are capable of internalizing iPSC-Exos.After 24 hours of intervention,the scratch healing rates in the control and experimental groups are(25.70±1.07)%and(71.60±12.76)%,respectively.The Transwell invasion cell numbers are(86.33±10.79)and(166.33±24.13)in the control and experimental groups,and the EdU-positive proportions are(45.30±3.17)%and(78.10±6.29)%,respectively.The above indicators in the experimental group show statistically significant differences compared to the control group(all P<0.05).Conclusion The exosomes secreted by pluripotent stem cells can promote the proliferation,migration,and invasion of keratinocytes,thereby indirectly promoting wound healing.
7.Bioequivalence and pharmacokinetic study of olmesartan medoxomil and hydrochlorothiazide tablets in Chinese healthy subjects
Qi-Qi ZHANG ; Xian-Gen XU ; Jin-Fang LOU ; Bo-Fan SONG ; Chun-Guang YANG ; Guang-Hui ZHU ; Ting LI
The Chinese Journal of Clinical Pharmacology 2024;40(11):1623-1627
Objective To study the bioequivalence and safety of two olmesartan medoxomil and hydrochlorothiazide tablets in Chinese healthy subjects.Methods A total of 24 healthy subjects underwent fasting and postprandial tests in a single-center,randomized,open-label,single-dose,two-formulation,two-sequence,two-period,self-cross-over controlled design.The subjects were administered a single oral dose of the test formulation and reference formulation(each containingolmesartan medoxomil 20 mg and hydrochlorothiazide 12.5 mg)in a random cross-over fashion.The plasma concentrations of olmesartan and hydrochlorothiazide were determined by LC-MS/MS.The non-compartmental model analysis of olmesartan and hydrochlorothiazide was conducted using WinNonlin 7.0 software to calculate pharmacokinetic parameters and assess bioequivalence.Results In the fasting test,the pharmacokinetic parameters of olmesartan of test and reference were as follows:Cmax were(798.35±206.78)and(664.52±168.25)ng·mL-1,AUC0-t were(4 430.71±1 294.87)and(3 976.67±1 083.54)h·ng·mL-1,AUC0-∞ were(4 551.67±1 303.06)and(4 090.37±1 103.97)h·ng·mL-1.The pharmacokinetic parameters of hydrochlorothiazide of test and reference were as follows:Cmax were(92.39±35.96)and(96.15±38.76)ng·mL-1,AUC0_t were(548.69±217.11)and(564.41±208.68)h·ng·mL-1,AUC0-∞ were(603.04±228.59)and(619.26±223.27)h·ng·mL-1.In the fed test,the pharmacokinetic parameters of olmesartan of T and R were as follows:Cmax were(583.15±149.48)and(550.57±104.76)ng·mL-1,AUC0-t were(3 585.18±952.72)and(3 292.19±904.58)h·ng·mL-1,AUC0-∞ were(3 696.05±996.55)and(3 396.30±923.41)h·ng·mL-1.The pharmacokinetic parameters of hydrochlorothiazide of test and reference were as follows:Cmax were(70.30±17.88)and(74.70±21.65)ng·mL-1,AUC0-t were(476.60±119.39)and(492.91±144.81)h·ng·mL-1,AUC0-∞ were(523.37±132.67)and(535.81±151.92)h·ng·mL-1.In fasting and fed condition,the 90%confidence interval(90%CI)of Cmax,AUC0-t and AUC0-∞ of olmesartan and hydrochlorothiazide were in 80.00%-125.00%.Conclusion The two olmesartan medoxomil and hydrochlorothiazide tablets were bioequivalent under fasting and fed conditions,and good security.
8.Effects of hesperidin in promoting acute skin wound healing
Yi-Ming HUANG ; Fei-Fei CHEN ; Rong-Rong ZHANG ; Guang-Hui ZHU
The Chinese Journal of Clinical Pharmacology 2024;40(14):2093-2097
Objective To study the effects of hesperidin on the migration ability of human keratinocytes(HaCaT)and human skin fibroblasts(HSF).Additionally,this research aims to preliminary investigate the influence and underlying mechanism of Hesperidin in facilitating the healing process of acute skin wounds in mice.Methods HaCaT and HSF were divided into blank group(without any treatment),control group(added 0.1%dimethyl sulfoxide)and experimental group(added 5.0 μg·mL-1 hesperidin)for 48 h.The healing ability of cells in vitro was detected by scratch test.The migration of cells was detected by Transwell migration test.C57 mice were randomly divided into model group,experimental-L,-H groups.The acute full-thickness skin defect wound model was established by surgical clipping of the full-thickness skin of the back of mice.The model group was given 0.5%dimethyl sulfoxide,and the experimental-L,-H groups were given 10,50 mg·kg-1 hesperidin solution,respectively.The protein expressions levels of β-catenin,proliferating cell nuclear antigen(PCNA),keratin 14 and collagen Ⅰ were detected by Western blot.Results The scratch healing rates of HaCaT-blank group,HaCaT-control group and HaCaT-experimental group were(21.05±1.10)%,(22.33±1.72)%and(41.61±2.90)%;the cell migration numbers were 57.00±11.36,60.38±10.11 and 287.75±20.21,respectively.The scratch healing rates of HSF-blank group,HSF-control group and HSF-experimental group were(17.82±1.62)%,(19.81±3.87)%and(64.22±1.94)%,the cell migration numbers were 43.25±7.98,40.75±6.70 and 140.88±14.35,respectively.The HaCaT-experimental group was compared with HaCaT-blank group and HaCaT-control group,and the HSF-experimental group was compared with HSF-blank group and HSF-control group,the differences were statistically significant(all P<0.05).The protein expression levels of β-catenin in the model group,experimental-L,-H groups were 0.53±0.06,0.74±0.17 and 1.44±0.11;the protein expression levels of keratin 14 were 0.33±0.06,0.54±0.07 and 1.26±0.16;the protein expression levels of PCNA were 0.46±0.05,0.72±0.09 and 1.14±0.11;the protein levels of collagen Ⅰ were 0.52±0.03,0.77±0.05 and 1.28±0.13,respectively.There were significant differences in the above indexes between the experimental-L,-H groups and the model group(P<0.05,P<0.01).Conclusion Hesperidin may promote the healing of acute skin wounds in mice by activating the Wnt/β-catenin signaling pathway and increasing the migration of HaCaT and HSF.
9.Clinical safety and validity analysis of retrograde new endo-scopic visual field in miniature pigs
Zhe KUANG ; Peng LI ; Da-Qing JIN ; Yong-Chao ZHANG ; Hui-Li GUO ; Yu-Fei ZHANG ; Guang-Lin HE ; Guo-Feng SUN ; Yuan HE
Chinese Journal of Current Advances in General Surgery 2024;27(1):14-18
Objective:To study the clinical safety and validity of retrograde new endoscopic field of vision in miniature pigs.Methods:6 live miniature pigs were selected as study subjects,En-doscopic Retrograde New View(ERNV)was selected.The performance,image quality and intraoper-ative and postoperative complications were evaluated.To evaluate whether all the experimental ani-mals could complete the relevant endoscopy.Verify ERNV's operating performance,including whether the duodenoscope can enter the biliary tract smoothly,and made sure whether the injection,suction,and instrument channels were unobstructed.Choledochoscope image clarity,color resolu-tion,image deformation and distortion,accurate evaluation of lumen conditions and clear observation of mucosal surface conditions were analyzed.Whether there were operant injuries such as bleeding and perforation,as well as adverse events such as respiratory depression and cardiac arrest.The sur-vival status and adverse reactions of all pigs were observed.Results:The choledochoscope was successfully inserted into the bile duct of 6 miniature pigs.The product had good operation perfor-mance and could enter the bile duct through the duodenoscope smoothly.The injection,suction and instrument channels were relatively smooth.In addition,the endoscopic images are clear,with better color resolution,and without image deformation and distortion,which can realize accurate evaluation of the conditions in the lumen and observe the mucosal surface conditions more clearly.No bile duct stenosis or dilatation occurred in all miniature pigs,and the bile duct mucosa was smooth,without hyperemia and edema,and no abnormal thickening or bending of mucous vessels.During the exami-nation,there were no operational injuries such as bleeding and perforation,and no adverse events such as respiratory depression and cardiac arrest occurred.The vital signs of all miniature pigs tended to be stable after operation,and the survival state was good,and there were no complications such as cholangitis,bleeding and perforation.Conclusion:ERNV has good clinical safety and efficacy,ex-cellent operation performance and excellent image quality,and is worthy of clinical application.
10.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*

Result Analysis
Print
Save
E-mail