1.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
2.Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-Altitude Hypoxia in the Rat Hippocampus.
Jin Yu FANG ; Huai Cun LIU ; Yan Fei ZHANG ; Quan Cheng CHENG ; Zi Yuan WANG ; Xuan FANG ; Hui Ru DING ; Wei Guang ZHANG ; Chun Hua CHEN
Biomedical and Environmental Sciences 2025;38(1):79-93
OBJECTIVE:
High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory. Nogo-A is an important axonal growth inhibitory factor. However, its function in high-altitude hypoxia and its mechanism of action remain unclear.
METHODS:
In an in vivo study, a low-pressure oxygen chamber was used to simulate high-altitude hypoxia, and genetic or pharmacological intervention was used to block the Nogo-A/NgR1 signaling pathway. Contextual fear conditioning and Morris water maze behavioral tests were used to assess learning and memory in rats, and synaptic damage in the hippocampus and changes in oxidative stress levels were observed. In vitro, SH-SY5Y cells were used to assess oxidative stress and mitochondrial function with or without Nogo-A knockdown in Oxygen Glucose-Deprivation/Reperfusion (OGD/R) models.
RESULTS:
Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats, triggered oxidative stress in the hippocampal tissue, and reduced the dendritic spine density of hippocampal neurons. Blocking the Nogo-A/NgR1 pathway ameliorated oxidative stress, synaptic damage, and the learning and memory impairment induced by high-altitude exposure.
CONCLUSION:
Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and memory impairment under high-altitude hypoxia and suggest the potential of the Nogo-A/NgR1 signaling pathway as a crucial therapeutic target for alleviating learning and memory dysfunction induced by high-altitude exposure.
GRAPHICAL ABSTRACT
available in www.besjournal.com.
Animals
;
Oxidative Stress
;
Hippocampus/metabolism*
;
Rats
;
Nogo Proteins/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Hypoxia/metabolism*
;
Altitude
;
Synapses
;
Humans
;
Altitude Sickness/metabolism*
3.miR-34c-3p Inhibits Nasopharyngeal Carcinoma Development via Inhibiting M2 Polarization of Macrophages.
Yu Zi JI ; Yu Jie WANG ; Ji Qing MA ; Zhi Hua YIN ; Fei LIU ; Yan Zi ZANG ; Guang Ke WANG ; Yong TAI
Biomedical and Environmental Sciences 2025;38(2):219-229
OBJECTIVE:
miR-34c-3p is down-regulated in nasopharyngeal carcinoma (NPC). The biological role of miR-34c-3p in NPC and its underlying mechanisms are unknown and were explored in this study.
METHODS:
Flow cytometry and immunohistochemical staining were employed to detect cluster of differentiation 86 (CD86) and cluster of differentiation 206 (CD206) expression; quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were employed to examine mRNA expression and protein levels; cell counting kit-8 (CCK8) and transwell assays were employed to assess cell proliferation, migration, and invasion; and hematoxylin-eosin (HE) staining was employed to assess pathological changes in tumor tissues.
RESULTS:
Our results revealed that the miR-34c-3p mimic markedly inhibited M2 polarization of macrophages by targeting SLC7A11, and M2 macrophages transfected with the miR-34c-3p mimic inhibited the proliferation, migration, and invasion of NPC cells. The in vivo experiments further confirmed that miR-34c-3p mimics blocked tumor growth and reduced inflammatory infiltration in tumor tissues.
CONCLUSION
This study provides novel insights into the pathogenesis of NPC and a new treatment strategy.
MicroRNAs/metabolism*
;
Nasopharyngeal Carcinoma/genetics*
;
Humans
;
Animals
;
Nasopharyngeal Neoplasms/genetics*
;
Macrophages/physiology*
;
Cell Line, Tumor
;
Mice
;
Cell Proliferation
;
Mice, Inbred BALB C
;
Cell Movement
;
Male
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
Female
4. Resveratrol inhibits autophagy and promotes apoptosis in uveal melanoma cells via miR-512-3P/DUSPl axis
Zheng-Yang SUN ; Nan-Nan LIU ; Xue-Fei FAN ; Su-Huan CHEN ; Xiao-Yu CHEN ; Zheng-Yang SUN ; Wu-Qi CHEN ; Guang-Yi CHEN ; Yu-Bao SHAO ; Xiao-Yu CHEN
Chinese Pharmacological Bulletin 2024;40(2):292-298
Aim To investigate the regulatory role and mechanism of resveratrol in inhibiting autophagy and promoting apoptosis in choroidal melanoma cells. Methods Choroidal melanoma cells (MUM2B) were divided into control and experimental groups, and treated with different concentrations of resveratrol (0, 10, 20,40,60,80 μmol ·L
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.Prediction of microbial concentration in hospital indoor air based on gra-dient boosting decision tree model
Guang-Fei YANG ; Shui WU ; Xiang-Yu QIAN ; Yu-Hong YANG ; Ye SUN ; Yun ZOU ; Li-Li GENG ; Yuan LIU
Chinese Journal of Infection Control 2024;23(7):787-797
Objective To explore the prediction of hospital indoor microbial concentration in air based on real-time indoor air environment monitoring data and machine learning algorithms.Methods Four locations in a hospital were selected as monitoring sampling points from May 23 to June 5,2022.The"internet of things"sensor was used to monitor a variety of real-time air environment data.Air microbial concentration data collected at each point were matched,and the gradient boosting decision tree(GBDT)was used to predict real-time indoor microbial concentra-tion in air.Five other common machine learning models were selected for comparison,including random forest(RF),decision tree(DT),k-nearest neighbor(KNN),linear regression(LR)and artificial neural network(ANN).The validity of the model was verified by the mean absolute error(MAE),root mean square error(RMSE)and mean absolute percentage error(MAPE).Results The MAPE value of GBDT model in the outpa-tient elevator room(point A),bronchoscopy room(point B),CT waiting area(point C),and nurses'station in the supply room(point D)were 22.49%,36.28%,29.34%,and 26.43%,respectively.The mean performance of the GBDT model was higher than that of other machine learning models at three sampling points and slightly lower than that of the ANN model at only one sampling point.The mean MAPE value of GBDT model at four sampling points was 28.64%,that is,the predicted value deviated from the actual value by 28.64%,indicating that GBDT model has good prediction results and the predicted value was within the available range.Conclusion The GBDT machine learning model based on real-time indoor air environment monitoring data can improve the prediction accuracy of in-door air microbial concentration in hospitals.
7.Manipulation treatment of lumbar disc herniation based on the model of muscles and bones assessment.
Bin XUE ; Tao LIU ; Hong ZHU ; Fei-Yue LI ; Jia-Yu ZHANG ; Qiang WANG ; Xiao-Bing XI ; Ling-Jun KONG ; Xin ZHOU ; Qing-Guang ZHU ; Min FANG
China Journal of Orthopaedics and Traumatology 2024;37(11):1080-1086
OBJECTIVE:
To explore the effectiveness of manipulation treatment for lumbar disc herniation (LDH) based on the model of muscle and bone assessment.
METHODS:
From May 2022 to August 2023, using the methods single-center randomized controlled in Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 72 patients were treated with LDH and divided into muscle and bone assessment model manipulation group and the two step seven gimmick group according to the random number table method, the muscle and bone assessment model manipulation group fall off in 1 case, the two step seven gimmick group falls off in 2 cases. There were 35 cases in the muscle and bone assessment model manipulation group, including 12 males and 23 females;The age was 27 to 48 years old with an average of (37.77±7.63) years old. The course of disease was 35 to 180 days with an average of (83.68±69.01) days. The patients were treated with manual therapy under the guidance of muscle and bone assessment model, twice a week for 4 weeks. There were 34 cases in the two step seven gimmick group including 12 males and 22 females;The age was 26 to 49 years old with an average of (37.59±7.43) years old;The course of disease was 40 to 175 days with an average of (82.15±68.87) days. The patients were treated with two step seven gimmick method, 2 times a week, for 4 weeks. The visual analogue scale (VAS) and Oswestry disability index (Oswestry disability index, ODI) questionnaire, muscle tension and lumbar spine angle and the straight leg-raising activities were compared between two groups before and 4 weeks after treatment.
RESULTS:
The VAS of the muscle and bone assessment model manipulation group and the two step seven gimmick group(6.51±0.61) and (6.62±0.56) before treatment decreased to 2.40±0.81 and 3.18±0.78 after 4 weeks of treatment, respectively, and the muscle and bone assessment model manipulation group was significantly lower than the two step seven gimmick group (P<0.01). The ODI of the muscle and bone assessment model manipulation group and the two step seven gimmick group were (64.57±5.11) and (65.02±5.18) before treatment, decreased to (18.60±2.27) and (24.70±2.14) after 4 weeks of treatment, and the ODI of the muscle and bone assessment model manipulation group was significantly lower than that of the two step seven gimmick group (P<0.01). Before the treatment, side erector spinae, gluteus medius, and gastrocnemius muscle tension were (59.95±2.60), (62.59±2.51), (49.97±2.01) in the muscle and bone assessment model manipulation group and (60.39±3.84), (62.47±3.27), (49.55±1.27) in the two step seven gimmick group;After 4 weeks of treatment, the muscle tension of erector spinae, gluteus medius and gastrocnemius on the affected side were (56.58±2.71), (60.44±2.31) and (49.19±1.57) in the muscle and bone assessment model manipulation group, (58.28±3.79), (60.11±2.87), (48.55±0.90) in the two step seven gimmick group, the differences had statistical significance before and after treatment of two groups(P<0.01). The muscle and bone assessment model manipulation group was better than the two step seven gimmick group in improving the erector spinae muscle tension on the affected side (P<0.05), and there was no significant difference in the rest (P>0.05). Before the treatment, lumbar proneness, stretch, subject to lateral flexion and lateral angle of the straight leg-raising on the affected side were (46.00±8.89)°, (13.57±3.75)°, (12.29±3.50) °, (43.71±7.98) ° in the muscle and bone assessment model manipulation group, (45.14±6.24) °, (12.23±3.75) °, (12.66±2.98) ° and (44.18±3.50) ° in the two step seven gimmick group. After 4 weeks of treatment, the angles of lumbar flexion, extension, flexion on the affected side and straight leg raising on the affected side were (76.29±4.43) °, (20.00±1.71) °, (22.43±2.81) °, (70.41±7.59) ° in the muscle and bone assessment model manipulation group, and (75.75±6.38) °, (16.43±3.36) °, (20.19±3.52) °, (65.42±6.15) ° in the two step seven gimmick group. The difference had statistical significance before and after treatment in two groups(P<0.01), a comparison between groups, after 4 weeks of treatment, the angles of lumbar flexion and extension, affected side flexion, and lower limb straight leg elevation in the muscle and bone assessment model manipulation group were better than those in the two step seven gimmick group (P<0.05). Before the treatment, pelvic tilt, lumbar lordosis angle were (2.71±1.01) mm, (37.63±3.35) ° in the muscle and bone assessment model manipulation group, and (2.69±0.97) mm, (36.98±3.73) ° in the two step seven gimmick group;After 4 weeks of treatment, the pelvic tilt and lumbar lordosis angle were (0.84±0.36) mm and (41.64±2.96) ° in the muscle and bone assessment model manipulation group, and those in the method of two step seven gimmick group were (1.18±0.75) mm and (41.70±3.14) °. There were significant differences before and after treatment in both groups (P<0.01), and the improvement of pelvic tilt in the muscle and bone assessment model manipulation group was better than that in the method of two step seven gimmick group after 4 weeks of treatment (P<0.05).
CONCLUSION
The manipulation under the guidance of the muscle and bone assessment model can effectively improve the pain and dysfunction of LDH patients, and has a better effect than the two-step seven-method manipulation group in improving the muscle tension, lumbar motion function and posture.
Humans
;
Male
;
Female
;
Intervertebral Disc Displacement/physiopathology*
;
Middle Aged
;
Adult
;
Lumbar Vertebrae
8.The efficacy and safety of intravenous sucrose iron therapy for recurrent iron deficiency anemia.
Jing Qian LIU ; Xia Wan YANG ; Xu LIU ; Jing HU ; Xiang Rong HU ; Xiao Xia LI ; Yu Fei ZHAO ; Yi Meng SHI ; Bao Hang ZHANG ; Wen Rui YANG ; Guang Xin PENG ; Xin ZHAO ; Feng Kui ZHANG
Chinese Journal of Hematology 2023;44(5):408-412
Objective: To evaluate the efficacy and safety of intravenous iron supplementation in patients with recurrent iron deficiency anemia (IDA) . Methods: This retrospective analysis of 90 patients with recurrent IDA from May 2012 to December 2021 was conducted, comparing the efficacy and safety of the intravenous iron therapy group and the oral iron therapy group. Results: Among the 90 patients with recurrent IDA, 20 were males and 70 were females, with a median age of 40 (range: 14-85) years. A total of 60 patients received intravenous iron supplementation and 30 received oral iron supplementation. The hematologic response rates in the intravenous iron group were significantly higher than those in the oral iron group at 4 and 8 weeks after treatment [80.0% (48/60) vs 3.3% (1/30) and 96.7% (58/60) vs 46.7% (14/30), all P<0.001, respectively]. The median increase in hemoglobin levels was also significantly higher in the intravenous iron group than in the oral iron group [38 (4, 66) g/L vs 7 (1, 22) g/L at week 4 and 44.5 (18, 80) g/L vs 19 (3, 53) g/L at week 8, all P<0.001]. The intravenous iron group had a significantly higher proportion of patients who achieved normal hemoglobin levels than the oral iron group (55.0% vs 0 and 90% vs 43.3%, all P<0.001, respectively). Iron metabolism indicators were tested before and after 8 weeks of treatment in 26 and 7 patients in the intravenous and oral iron groups, respectively. The median increase in serum ferritin (SF) levels in the intravenous iron group 8 weeks after treatment was 113.7 (49.7, 413.5) μg/L, and 54% (14/26) of these patients had SF levels of ≥100 μg/L, which was significantly higher than the median increase in SF levels in the oral iron group [14.0 (5.8, 84.2) μg/L, t=4.760, P<0.001] and the proportion of patients with SF levels of ≥100 μg/L (P=0.013). The incidence of adverse reactions was 3.3% (2/60) in the intravenous iron group, which was significantly lower than that in the oral iron group [20.0% (6/30), P=0.015]. Conclusion: Intravenous iron supplementation is more effective for hematologic response, faster hemoglobin increase, and higher iron storage replenishment rates compared with oral iron supplementation in patients with recurrent IDA, and it is well tolerated by patients.
Male
;
Female
;
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Anemia, Iron-Deficiency/epidemiology*
;
Sucrose/therapeutic use*
;
Ferric Compounds/therapeutic use*
;
Retrospective Studies
;
Iron/therapeutic use*
;
Hemoglobins/therapeutic use*
9.Feasibility study of using bridging temporary permanent pacemaker in patients with high-degree atrioventricular block after TAVR.
San Shuai CHANG ; Xin Min LIU ; Zhi Nan LU ; Jing YAO ; Cneng Qian YIN ; Wen Hui WU ; Fei YUAN ; Tai Yang LUO ; Zheng Ming JIANG ; Guang Yuan SONG
Chinese Journal of Cardiology 2023;51(6):648-655
Objective: To determine the feasibility of using temporary permanent pacemaker (TPPM) in patients with high-degree atrioventricular block (AVB) after transcatheter aortic valve replacement (TAVR) as bridging strategy to reduce avoidable permanent pacemaker implantation. Methods: This is a prospective observational study. Consecutive patients undergoing TAVR at Beijing Anzhen Hospital and the First Affiliated Hospital of Zhengzhou University from August 2021 to February 2022 were screened. Patients with high-degree AVB and TPPM were included. Patients were followed up for 4 weeks with pacemaker interrogation at every week. The endpoint was the success rate of TPPM removal and free from permanent pacemaker at 1 month after TPPM. The criteria of removing TPPM was no indication of permanent pacing and no pacing signal in 12 lead electrocardiogram (EGG) and 24 hours dynamic EGG, meanwhile the last pacemaker interrogation indicated that ventricular pacing rate was 0. Routinely follow-up ECG was extended to 6 months after removal of TPPM. Results: Ten patients met the inclusion criteria for TPPM, aged (77.0±11.1) years, wirh 7 females. There were 7 patients with third-degree AVB, 1 patient with second-degree AVB, 2 patients with first degree AVB with PR interval>240 ms and LBBB with QRS duration>150 ms. TPPM were applied on the 10 patients for (35±7) days. Among 8 patients with high-degree AVB, 3 recovered to sinus rhythm, and 3 recovered to sinus rhythm with bundle branch block. The other 2 patients with persistent third-degree AVB received permanent pacemaker implantation. For the 2 patients with first-degree AVB and LBBB, PR interval shortened to within 200 ms. TPPM was successfully removed in 8 patients (8/10) at 1 month without permanent pacemaker implantation, of which 2 patients recovered within 24 hours after TAVR and 6 patients recovered 24 hours later after TAVR. No aggravation of conduction block or permanent pacemaker indication were observed in 8 patients during follow-up at 6 months. No procedure-related adverse events occurred in all patients. Conclusion: TPPM is reliable and safe to provide certain buffer time to distinguish whether a permanent pacemaker is necessary in patients with high-degree conduction block after TAVR.
Female
;
Humans
;
Atrioventricular Block/therapy*
;
Feasibility Studies
;
Transcatheter Aortic Valve Replacement
;
Pacemaker, Artificial
;
Bundle-Branch Block
10.A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis.
Daoyuan HUANG ; Yuesheng ZUO ; Chen ZHANG ; Guoqiang SUN ; Ying JING ; Jinghui LEI ; Shuai MA ; Shuhui SUN ; Huifen LU ; Yusheng CAI ; Weiqi ZHANG ; Fei GAO ; Andy PENG XIANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Jing QU ; Si WANG
Protein & Cell 2023;14(12):888-907
The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.
Animals
;
Male
;
Testis
;
Sertoli Cells/metabolism*
;
Transcriptome
;
Spermatogenesis/genetics*
;
Primates
;
Aging/genetics*
;
Stem Cells

Result Analysis
Print
Save
E-mail