1.Aging parameters of the accelerated aging procedure through D-Galactose induction
Ronald Winardi Kartika ; Kris Herawan Timotius ; Veronika Maria Sidharta ; Tena Djuartina ; Cynthia Retna Sartika
Acta Medica Philippina 2024;58(Early Access 2024):1-6
Background and Objectives:
Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models. A low dose of long-term use and a high dose of short-term use of D-gal can induce natural aging in mice, like brain, cardiac, liver, renal, and skin aging, and erectile dysfunction. Our research aims to determine whether a high dose of short-term use of D-gal. i.p. in rats can induce natural aging and affect the following parameters: body weight (BW), Superoxide Dismutase (SOD), Vascular endothelial growth factor (VEGF), C-reactive protein (CRP), and myostatin.
Methods:
A daily D-gal i.p. dose of 300 mg/ml/kg for seven days was carried out to induce aging parameters in the rats. After seven days, the body and gastrocnemius circumference of the rats were weighed, and biochemical analysis for SOD, VEGF, CRP, and myostatin in the blood plasma was done.
Results:
The data obtained were analyzed using nonparametric statistics Friedman test and Mann-Whitney test. After the seven day-intervention, both the control (NaCl 0.9% i.p.) and the high dose of short-term use of D-gal i.p. groups showed no significant difference in the body weight and gastrocnemius circumference. However, D-gal administration could increase the blood plasma level of SOD, VEGF, CRP, and myostatin.
Conclusion
We conclude that a high dose of short-term intraperitoneal D-galactose can be administrated to induce aging in rat models. The SOD, VEGF, CRP and myostatin can be used as aging parameters.
Aging
;
Galactose
;
Myostatin
;
Vascular Endothelial Growth Factor A
2.Aging parameters of the accelerated aging procedure through D-Galactose induction
Ronald Winardi Kartika ; Kris Herawan Timotius ; Veronika Maria Sidharta ; Tena Djuartina ; Cynthia Retna Sartika
Acta Medica Philippina 2024;58(23):104-109
Background and Objectives:
Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models. A low dose of long-term use and a high dose of short-term use of D-gal can induce natural aging in mice, like brain, cardiac, liver, renal, and skin aging, and erectile dysfunction. Our research aims to determine whether a high dose of short-term use of D-gal. i.p. in rats can induce natural aging and affect the following parameters: body weight (BW), Superoxide Dismutase (SOD), Vascular endothelial growth factor (VEGF), C-reactive protein (CRP), and myostatin.
Methods:
A daily D-gal i.p. dose of 300 mg/ml/kg for seven days was carried out to induce aging parameters in the rats. After seven days, the body and gastrocnemius circumference of the rats were weighed, and biochemical analysis for SOD, VEGF, CRP, and myostatin in the blood plasma was done.
Results:
The data obtained were analyzed using nonparametric statistics Friedman test and Mann-Whitney test. After the seven day-intervention, both the control (NaCl 0.9% i.p.) and the high dose of short-term use of D-gal i.p. groups showed no significant difference in the body weight and gastrocnemius circumference. However, D-gal administration could increase the blood plasma level of SOD, VEGF, CRP, and myostatin.
Conclusion
We conclude that a high dose of short-term intraperitoneal D-galactose can be administrated to induce aging in rat models. The SOD, VEGF, CRP and myostatin can be used as aging parameters.
Aging
;
D-Galactose
;
Galactose
;
Myostatin
;
VEGF
;
Vascular Endothelial Growth Factor A
3.Effect of recombinant human fibroblast growth factor 21 on the mineralization of cementoblasts and its related mechanism.
Hao WU ; Ying LI ; Yuzhuo WANG ; Jize YU ; Xingfu BAO ; Min HU
West China Journal of Stomatology 2023;41(2):140-148
OBJECTIVES:
To investigate the effect of recombinant human fibroblast growth factor 21 (rhFGF21) on the proliferation and mineralization of cementoblasts and its mechanism.
METHODS:
Hematoxylin eosin, immunohistochemical staining, and immunofluorescence were used to detect the expression and distribution of fibroblast growth factor 21 (FGF21) in rat periodontal tissues and cementoblasts (OCCM-30), separately. Cell Counting Kit-8 was used to detect the proliferation of OCCM-30 under treatment with rhFGF21. Alkaline phosphatase staining and Alizarin Red staining were used to detect the mineralization state of OCCM-30 after 3 and 7 days of mineralization induction. The transcription and protein expression of the osteogenic-related genes Runx2 and Osterix were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot analysis. The expression levels of genes of transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling pathway in OCCM-30 were detected through PCR array analysis.
RESULTS:
FGF21 was expressed in rat periodontal tissues and OCCM-30. Although rhFGF21 had no significant effect on the proliferation of OCCM-30, treatment with 50 ng/mL rhFGF21 could promote the mineralization of OCCM-30 cells after 7 days of mineralization induction. The transcriptional levels of Runx2 and Osterix increased significantly at 3 days of mineralization induction and decreased at 5 days of mineralization induction. Western blot analysis showed that the protein expression levels of Runx2 and Osterix increased during mineralization induction. rhFGF21 up-regulated Bmpr1b protein expression in cells.
CONCLUSIONS
rhFGF21 can promote the mineralization ability of OCCM-30. This effect is related to the activation of the TGFβ/BMP signaling pathway.
Humans
;
Rats
;
Animals
;
Dental Cementum
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cell Differentiation
;
Bone Morphogenetic Proteins/metabolism*
;
Transforming Growth Factor beta/pharmacology*
4.Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure.
Wanhao YAN ; Xiao LIN ; Yiqian YING ; Jun LI ; Zhipeng FAN
International Journal of Oral Science 2023;15(1):6-6
The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the "m6A site methylation stoichiometry" of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3'-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.
Humans
;
Bone Marrow/metabolism*
;
Bone Morphogenetic Proteins/metabolism*
;
Dental Implants/adverse effects*
;
Diabetes Mellitus, Type 2/metabolism*
;
Growth Differentiation Factors/metabolism*
;
Mesenchymal Stem Cells/metabolism*
;
RNA/metabolism*
;
RNA Processing, Post-Transcriptional
5.GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma.
Yingxi DU ; Yarui MA ; Qing ZHU ; Yong FU ; Yutong LI ; Ying ZHANG ; Mo LI ; Feiyue FENG ; Peng YUAN ; Xiaobing WANG
Frontiers of Medicine 2023;17(1):119-131
Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Cisplatin/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Growth Differentiation Factor 15/therapeutic use*
;
Receptor, Transforming Growth Factor-beta Type II/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
6.Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells.
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1276-1283
OBJECTIVE:
To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process.
METHODS:
The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot.
RESULTS:
When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05).
CONCLUSION
Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Humans
;
beta Catenin/metabolism*
;
Bone Marrow Cells
;
Cell Differentiation
;
Cells, Cultured
;
Epidermal Growth Factor/metabolism*
;
Mesenchymal Stem Cells
;
Wnt Signaling Pathway
;
Neurons
;
Fibroblast Growth Factor 2/metabolism*
7.Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism.
Zhongchen LUO ; Xin LI ; Lunchang WANG ; Chang SHU
Journal of Central South University(Medical Sciences) 2023;48(8):1252-1259
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
Humans
;
Transforming Growth Factor beta/metabolism*
;
Constriction, Pathologic
;
Signal Transduction
;
Cell Differentiation
;
Vascular Diseases
;
Transforming Growth Factors
;
Transforming Growth Factor beta1
8.Mstn knockdown promotes intramuscular fatty acid metabolism by β oxidation via the up-regulation of Cpt1b.
Yanan GUO ; Ruyan YANG ; Zhiyu ZHANG ; Dulan BAO ; Ying SUN ; Lei YANG ; Guangpeng LI ; Li GAO
Chinese Journal of Biotechnology 2022;38(8):3076-3089
Myostatin (Mstn) is known as growth/differentiation factor-8 (GDF-8). Knockout or knockdown of Mstn gene promotes muscle development and reduces fat content. Here we prepared Mstn knockdown mice by RNA interference, then the morphology of the skeletal muscle, the content of triglyceride (TG), the content and composition of fatty acids in the skeletal muscle were detected. The expression of Mstn reduced in muscle of Mstn knockdown mice compared to the controls. The cross sectional areas of the skeletal muscle myofibers were significantly larger while the content of TG was less than that of the controls, and the ratios of n-3/n-6 and unsat/sat in the knockdown mice increased significantly. Subsequently, we detected the expression of genes associated with fatty acid metabolism. The expression of the genes associated with lipolysis and fatty acid transportation were up-regulated, while the genes associated with fatty acid synthesis were down-regulated. Of these genes, the up-regulation of a gene associated with β oxidation, Cpt1b, was up-regulated remarkably. We further detected the enzyme activity of CPT1 in skeletal muscle and obtained the same results with gene expression. Moreover, chromatin immunoprecipitation assay was performed and we found that SMAD3, a transcription factor downstream of Mstn, directly binds to the promoter of Cpt1b gene. These results showed that knockdown of Mstn up-regulated the expression of Cpt1b through the binding of SMAD3 to the promoter of Cpt1b, then promoted the β oxidation metabolism of intramuscular fatty acids.
Animals
;
Carnitine O-Palmitoyltransferase/metabolism*
;
Fatty Acids
;
Lipid Metabolism
;
Mice
;
Mice, Knockout
;
Muscle, Skeletal/metabolism*
;
Myostatin/metabolism*
;
Oxidation-Reduction
;
Up-Regulation
9.Propagation and phenotypic analysis of mutant rabbits with MSTN homozygous mutation.
Liqing SHANG ; Shaozheng SONG ; Ting ZHANG ; Kunning YAN ; Heqing CAI ; Yuguo YUAN ; Yong CHENG
Chinese Journal of Biotechnology 2022;38(5):1847-1858
Myostatin gene (MSTN) encodes a negative regulator for controlling skeletal muscle growth in animals. In this study, MSTN-/- homozygous mutants with "double muscle" phenotypic traits and stable inheritance were bred on the basis of MSTN gene editing rabbits, with the aim to establish a method for breeding homozygous progeny from primary MSTN biallelic mutant rabbits. MSTN-/- primary mutant rabbits were generated by CRISPR/Cas9 gene editing technology. The primary mutant rabbits were mated with wild type rabbits to produce F1 rabbits, whereas the F2 generation homozygous rabbits were bred by half-sibling mating or backcrossing with F1 generation rabbits of the same mutant strain. Sequence analysis of PCR products and its T vector cloning were used to screen homozygous rabbits. The MSTN mutant rabbits with 14-19 week-old were weighed and the difference of gluteus maximus tissue sections and muscle fiber cross-sectional area were calculated and analyzed. Five primary rabbits with MSTN gene mutation were obtained, among which three were used for homozygous breeding. A total of 15 homozygous rabbits (5 types of mutants) were obtained (M2-a: 3; M2-b: 2; M3-a: 2; M7-a: 6; M7-b: 2). The body weight of MSTN-/- homozygous mutant rabbits aged 14-19 weeks were significantly higher than that of MSTN+/+ wild-type rabbits of the same age ((2 718±120) g vs. (1 969±53) g, P < 0.01, a 38.0% increase). The mean cross sections of gluteus maximus muscle fiber in homozygous mutant rabbits were not only significantly higher than that of wild type rabbits ((3 512.2±439.2) μm2 vs. (1 274.8±327.3) μm2, P < 0.01), but also significantly higher than that of MSTN+/- hemizygous rabbits ((3 512.2±439.2) μm2 vs. (2 610.4±604.4) μm2, P < 0.05). In summary, five homozygous mutants rabbits of MSTN-/- gene were successfully bred, which showed a clear lean phenotype. The results showed that the primary breeds were non-chimeric mutant rabbits, and the mutant traits could be inherited from the offspring. MSTN-/- homozygous mutant rabbits of F2 generation could be obtained from F1 hemizygous rabbits by inbreeding or backcrossing. The progenies of the primary biallelic mutant rabbits were separated into two single-allelic mutants, both of which showed a "double-muscle" phenotype. Thus, this study has made progress in breeding high-quality livestock breeds with gene editing technology.
Animals
;
CRISPR-Cas Systems/genetics*
;
Gene Editing
;
Muscle, Skeletal/metabolism*
;
Mutation
;
Myostatin/metabolism*
;
Phenotype
;
Rabbits
10.Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1α-XBP1 signaling axis.
Ling Jian ZHUO ; Shuo Chen WANG ; Xing LIU ; Bao An CHEN ; Xiang LI
Journal of Southern Medical University 2022;42(3):432-437
OBJECTIVE:
To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.
METHODS:
Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.
RESULTS:
Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.
CONCLUSION
Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Animals
;
Cell Differentiation/drug effects*
;
Endoribonucleases/metabolism*
;
Estradiol/pharmacology*
;
Estrogens/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Macrophages, Peritoneal/metabolism*
;
Mice
;
Phenotype
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation/drug effects*
;
X-Box Binding Protein 1/metabolism*


Result Analysis
Print
Save
E-mail