1.Effect of the hydrophobin HFBI-fusion tag on exogenous protein accumulation in tobacco plant.
Xiqian ZHANG ; Hongzhen MU ; Ting MA ; Xiangzhen DING ; Zhiying LI ; Sheng WANG
Journal of Southern Medical University 2015;35(12):1665-1671
OBJECTIVETo explore the mechanisms by which HFBI fusions increase recombinant fusion protein accumulation in plants.
METHODSThe HFBI sequence from Trichoderma reesei was synthesized and two plant expression vectors for expression of green fluorescence protein (GFP) and GFP-HFBI were constructed. The vectors were inoculated in Nicotiana benthamiana plants through agroinfiltration, and the expression levels and mRNA accumulation levels of GFP in Nicotiana leaves were examined by Western blotting, ELISA and RT-PCR.
RESULTSThe HFBI fusion tag significantly enhanced the accumulation of GFP in the leaves of N. benthamiana without causing toxic effects. Endoplasmic reticulum-targeted GFP-HFBI fusion induced the formation of spherical protein particles in the plant cells.
CONCLUSIONHFBI fusions can increase the accumulation of its fusion partner in plants by forming stable protein particles, which probably shields the target protein from endogenous protease-induced degadation. HFBI fusion technology provides an alternative to improving recombinant protein expression in plants from agroinfection-compatible expression vectors.
Endoplasmic Reticulum ; Genetic Engineering ; methods ; Genetic Vectors ; Green Fluorescent Proteins ; biosynthesis ; Imidazoles ; chemistry ; Plant Leaves ; metabolism ; Plants, Genetically Modified ; genetics ; metabolism ; Recombinant Fusion Proteins ; biosynthesis ; Tobacco ; genetics ; metabolism
2.Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry.
Zi-Liang ZHOU ; Jing JIANG ; Jiang-An YIN ; Shi-Qing CAI
Acta Physiologica Sinica 2014;66(3):341-348
Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these channels. In this study, we generated an integrated transgenic worm strain expressing green fluorescence protein (GFP) fused CLC-type chloride channel 1 (CLH-1::GFP), a voltage-gated chloride channel in Caenorhabditis elegans (C. elegans). CLH-1::GFP was expressed in some unidentified head neurons and posterior intestinal cells of C. elegans. Interacting proteins of CLH-1::GFP were purified by GFP-Trap, a novel system for efficient isolation of GFP fusion proteins and their interacting factors. Mass spectrometry (MS) analysis revealed that a total of 27 high probability interacting proteins were co-trapped with CLHp-1::GFP. Biochemical evidence showed that eukaryotic translation elongation factor 1 (EEF-1), one of these co-trapped proteins identified by MS, physically interacted with CLH-1, in consistent with GFP-Trap experiments. Further immunostaining data revealed that the protein level of CLH-1 was significantly increased upon co-expression with EEF-1. These results suggest that the combination of GFP-Trap purification with MS is an excellent tool to identify novel interacting proteins of voltage-gated chloride channels in C. elegans. Our data also show that EEF-1 is a regulator of voltage-gated chloride channel CLH-1.
Animals
;
Animals, Genetically Modified
;
Caenorhabditis elegans
;
genetics
;
metabolism
;
Caenorhabditis elegans Proteins
;
metabolism
;
Chloride Channels
;
metabolism
;
Green Fluorescent Proteins
;
chemistry
;
Mass Spectrometry
;
Peptide Elongation Factor 1
;
metabolism
3.Vitro study on gene transfection efficiency of hyaluronic acid modified core-shell liponanoparticles in human retinal pigment epithelium cells.
Ya-Nan ZHAO ; Li GAN ; Jing WANG ; Xi CHEN ; Zheng JIA ; Yong GAN ; Jian-Ping LIU
Acta Pharmaceutica Sinica 2014;49(5):711-717
The aim of this study is to prepare hyaluronic acid (HA) modified core-shell liponanoparticles (pHA-LCS-NPs) as gene delivery system and investigate its gene transfection efficiency in human retinal pigment epithelium (ARPE-19) cells in vitro. The pHA-LCS-NPs was prepared by firstly hydrating dry lipid film with CS-NPs suspension to get LCS-NPs, then modifying the lipid bilayer with HA by amidation reaction between HA and dioleoyl phosphatidylethanolamine (DOPE). Its morphology, particle size and zeta potential were investigated. XTT assay was used to evaluate the cell safety of different vectors in vitro. The gene transfection efficiency of pHA-LCS-NPs modified with different contents of HA was investigated in ARPE-19 cells with green fluorescent protein (pEGFP) as the reporter gene. The results showed that the obtained pHA-LCS-NPs exhibited a clear core-shell structure with the average particles size of (214.9 +/- 7.2) nm and zeta potential of (-35 +/- 3.7) mV. The 24 h cumulative release of gene from pHA-LCS-NPs was less than 30%. After 48 h incubation, gene transfection efficiency of pHA-LCS-NPs/pEGFP was 1.81 times and 3.75 times higher than that of CS-NPs/pEGFP and naked pEGFP, respectively. Also no obvious cytotoxicity was observed on pHA-LCS-NPs. It suggested that the pHA-LCS-NPs might be promising non-viral gene delivery systems with high efficiency and low cytotoxicity.
Cell Survival
;
Gene Transfer Techniques
;
Genes, Reporter
;
Genetic Vectors
;
Green Fluorescent Proteins
;
metabolism
;
Humans
;
Hyaluronic Acid
;
chemistry
;
pharmacology
;
Lipids
;
Nanoparticles
;
Particle Size
;
Phosphatidylethanolamines
;
chemistry
;
pharmacology
;
Retinal Pigment Epithelium
;
drug effects
;
Transfection
4.Research on construction of sheep lung adenomas virus pEGFP-C1/exJSRV-env and induction of malignant transformation in NIH3T3.
Yu-Fei ZHANG ; Yue LIU ; Zhuan-Jia WANG ; Xiao-Lin SUN ; Shu-Ying LIU
Chinese Journal of Virology 2014;30(3):268-277
This study aims to construct a eukaryotic expression system for envelope gene of Jaagsiekte sheep retrovirus, observes its localization in 293T cells, and investigates the potential in inducing malignant transformation of NIH3T3 cells. By RT-PCR, the full-length cDNA of envelope gene of Jaagsiekte sheep retrovirus (exJSRV-env) was amplified from the extract of naturally infected sheep lung. The clone of target gene was sub-cloned into eukaryotic expression system pEGFP-C1, and validated by PCR, restriction endonuclease, and sequencing. Bioinformatic analysis concerning biological function and cellular localiza tion of exJSRV-env was also performed. The recombinant clone of exJSRV-env was transfected into 293T cells and NIH3T3 cells by Lipofectamine LTX. The expression and celluar localization in 293T cells were validated by confocal microscopy. Soft agar colony formation assay was employed to test the anchorage-independent growth of NIH3T3. DNA sequencing and restriction enzyme digestion with Kpn I and Hind III indicated the correct construction of the recombinant plasmid, which was named pEGFP-C1/exJSRV-env. Amino acid sequence alignment of exJSRV-env with reference sequences found 85%-100% homogeneity. A YRNM motif was discovered at the cytoplasmic tail of envelope gene, which is exclusively found in exogenous viruses. Phylogenetic tree analysis showed that our clone of exJSRV-env clustered closely with pathogenic exogenous Jaagsiekte sheep retroviruses. Fluorescence microscopy indicated typical membrane localization of exJSRV-env protein. NIH3T3 cells transfected with exJSRV-env lost contact inhibition, and acquired colony forming ability in soft agar. This study indicated that envelope protein of Jaagsiekte sheep retrovirus can induce malignant transformation of mouse fibroblast cell NIH3T3. Discoveries of this study provide a basis for further structural and functional research on Jaagsiekte sheep retrovirus envelope protein.
Amino Acid Sequence
;
Animals
;
Betaretrovirus
;
chemistry
;
classification
;
genetics
;
physiology
;
Cell Transformation, Viral
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Mice
;
Molecular Sequence Data
;
NIH 3T3 Cells
;
Phylogeny
;
Retroviridae Infections
;
veterinary
;
virology
;
Sequence Alignment
;
Sheep
;
Sheep Diseases
;
virology
;
Transformation, Genetic
;
Tumor Virus Infections
;
veterinary
;
virology
;
Viral Envelope Proteins
;
chemistry
;
genetics
;
metabolism
5.Involvement of VKORC1 in the inhibition of calcium oxalate crystal formation in HK-2 cells.
Bo HU ; Hao-ran WU ; Zhi-yong MA ; Zhuan-chang WU ; Ying-mei LU ; Guo-wei SHI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(3):376-381
The vitamin K epoxide reductase complex subunit 1 (VKORC1), the rate-limiting enzyme for vitamin K recycling, is significantly down-regulated in the kidneys of urolithiasis patients. This study searched for direct evidence to define the inhibitory activity of VKORC1 against calcium oxalate (CaOx) crystal formation. In the experiment of VKORC1 overexpression, HK-2 cells were transfected with the pFLAG-CMV-7.1-VKORC1 plasmid as a pFLAG-CMV-7.1-VKORC1 transfection group or the pFLAG-CMV-7.1 plasmid as a pFLAG-CMV-7.1 control group. In the experiment of VKORC1 knockdown, HK-2 cells were transfected with the PGPU6/GFP/Neo-VKORC1shRNA-2 as a PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group or the PGPU6/GFP/Neo-shRNA-NC plasmid as a PGPU6/GFP/Neo-shRNA-NC control group. The expression of VKORC1 in HK-2 cells was detected by real-time quantitative PCR and Western blotting. The CaOx crystal formation was observed under the laser-scanning confocal microscope. It was found that the expression levels of VKORC1 mRNA and protein were significantly higher in the pFLAG-CMV-7.1-VKORC1 transfection group than in the pFLAG-CMV-7.1 control group (P<0.01). The number of CaOx crystals in HK-2 cells incubated in fluorescently labeled CaOx monohydrate (COM) crystal medium for 48 h was 14±4 per field (100×) in the pFLAG-CMV-7.1-VKORC1 transfection group and 26±5 per field (100×) in the pFLAG-CMV-7.1 control group respectively under the laser-scanning confocal microscope. The amount of CaOx crystal aggregation and formation in the pFLAG-CMV-7.1-VKORC1 transfection group was significantly reduced as compared with the pFLAG-CMV-7.1 control group (P<0.05). The expression levels of VKORC1 mRNA and protein were significantly lower in the PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group than in the PGPU6/GFP/Neo-shRNA-NC control group (P<0.05). The number of CaOx crystals in HK-2 cells incubated in fluorescently labeled COM crystal medium was 65±11 per field (100×) in the PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group and 24±6 per field (100×) in the PGPU6/GFP/Neo-shRNA-NC control group respectively under the laser-scanning confocal microscope. The amount of CaOx crystal aggregation and formation in the PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group was significantly increased as compared with the PGPU6/GFP/Neo-shRNA-NC control group (P<0.05). These findings suggested that the VKORC1 protein could inhibit CaOx salt crystallization, adhesion and aggregation. This research would help us to understand the mechanisms involving the interaction between crystallization and epithelial cells and the formation of CaOx.
Apoptosis
;
drug effects
;
Blotting, Western
;
Calcium Oxalate
;
chemistry
;
metabolism
;
pharmacology
;
Cell Line
;
Crystallization
;
Dose-Response Relationship, Drug
;
Flow Cytometry
;
Gene Expression
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Microscopy, Confocal
;
RNA Interference
;
Reverse Transcriptase Polymerase Chain Reaction
;
Time Factors
;
Transfection
;
Vitamin K Epoxide Reductases
;
genetics
;
metabolism
6.Preliminary study of chitosan/pcDNA-EGFP-TGFbeta1 nanoparticles used in the transfection of synovial-derived mesenchymal stem cells.
Bin LING ; Hui LIU ; Yishan LIU ; Abass KEREMU ; Zhongcheng GONG ; Mei HU ; Xiaopeng YIN ; Bo SHAO ; Zhaoquan LIN
Journal of Biomedical Engineering 2013;30(6):1260-1264
The objective of this study is to explore the application possibility of chitosan/pcDNA-EGFP-TGFPbeta1 nanoparticles in the transfection of synovial-derived mesenchymal stem cells (SDMSCs). Chitosan/pcDNA-EGFP-TGFbeta1 nanoparticles were fabricated through method of ionic crosslinking. The SDMSCs were harvested from rabbit joints and cultured to passage 3. The SDMSCs were then transfected with chitosan/pcDNA-EGFP-TGFbeta1 nanoparticles. Scanning electronic microscope (SEM) was employed to detect the shape and diameter of the nanoparticles. The transfected SDMSCs were examined under the fluorescence microscope and detected through the flow cytometry (FCM). The SEM examination showed that the contour of the fabricated chitosan/pcDNA-EGFP-TGFbeta1 nanoparticles was round and its average diameter was 50 nm. After being cultured for 48 h, the SDMSCs transfected by chitosan/pcDNA-EGFP-TGFbeta1 nanoparticles could be detected under the fluorescence microscope, and the live SDMSCs could also be examined through FCM. The transfection rate was 8% - 10%. Therefore, it suggested that the chitosan/pcDNA-EGFP-TGFbeta1 nanoparticles fabricated through the method of ionic crosslinking could transfect the SDMSCs, but the transfection rate should be improved.
Animals
;
Chitosan
;
chemistry
;
Genetic Vectors
;
Green Fluorescent Proteins
;
genetics
;
Mesenchymal Stromal Cells
;
cytology
;
Microscopy, Electron, Transmission
;
Microscopy, Fluorescence
;
Nanoparticles
;
chemistry
;
Rabbits
;
Transfection
;
Transforming Growth Factor beta1
;
genetics
7.Cost-effective production of protein by using cellulose-binding domain fusion tag in Corynebacterium glutamicum.
Zhijing ZHAO ; Huan JIANG ; Wenting SHEN ; Lianyan SONG ; Guang HU
Chinese Journal of Biotechnology 2013;29(5):691-694
The CBD gene from Trichoderma reesei was cloned into the Corynebacterium glutamicum secretion expression vector pXMJ19-sp, in which green fluorescent protein was inserted to obtain pXMJ19-sp-GFP-CBD. After induced by 0.5 mmol/L IPTG, GFP-CBD was expressed in Corynebacterium glutamicum at high level of 200 mg/L. The GFP-CBD could be purified to high purity with cellulose column. The results indicated CBD can be successfully used in Corynebacterium glutamicum expression system and thus offer an extremely simple, effective and scalable way for production of recombinant proteins.
Base Sequence
;
Cellulases
;
biosynthesis
;
genetics
;
Cellulose
;
chemistry
;
genetics
;
Cloning, Molecular
;
Corynebacterium glutamicum
;
genetics
;
metabolism
;
Cost-Benefit Analysis
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Protein Engineering
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Trichoderma
;
genetics
8.Simplification and optimization of the preparation of Escherichia coli extract for cell-free protein expression.
Xinjuan GUO ; Chunshan QUAN ; Pengchao ZHAO ; Lina WANG ; Shengdi FAN
Chinese Journal of Biotechnology 2013;29(4):532-535
Cell-free protein expression system is a new method to express target protein in vitro and has been widely applied to the study of protein structure, protein function and other related fields. Preparation of cell extract is one of the key factors that affect the efficiency of the cell-free system. To improve the efficiency and economical feasibility of cell-free protein synthesis, we discussed the parameters during the preparation of the cell extract. These parameters include centrifugation speed, pre-incubation, and dialysis. We used the green fluorescent protein as the reporter protein, and obtained a simple procedure for the preparation of Escherichia coli cell extract. A simple centrifugation step (12 000 x g, 10 min) followed by a brief incubation was sufficient for the preparation of an active cell extract to support protein expression with higher productivity (209 microg/mL). Compared to the traditional E. coli S30 procedure, the processing time was reduced by 62%, and the productivity was increased by 2.6 times. The new procedure will make the advantage of cell-free technology more obvious, and promote its wider application.
Cell Fractionation
;
methods
;
Cell-Free System
;
Escherichia coli
;
cytology
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
biosynthesis
;
chemistry
;
isolation & purification
;
Green Fluorescent Proteins
;
metabolism
9.Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement.
Yingxiao CHEN ; Xianqiang SONG ; Sheng YE ; Lin MIAO ; Yun ZHU ; Rong-Guang ZHANG ; Guangju JI
Protein & Cell 2013;4(4):299-309
Genetically encoded Ca(2+) indicators (GECI) are important for the measurement of Ca(2+) in vivo. GCaMP2, a widely-used GECI, has recently been iteratively improved. Among the improved variants, GCaMP3 exhibits significantly better fluorescent intensity. In this study, we developed a new GECI called GCaMPJ and determined the crystal structures of GCaMP3 and GCaMPJ. GCaMPJ has a 1.5-fold increase in fluorescence and 1.3-fold increase in calcium affinity over GCaMP3. Upon Ca(2+) binding, GCaMP3 exhibits both monomeric and dimeric forms. The structural superposition of these two forms reveals the role of Arg-376 in improving monomer performance. However, GCaMPJ seldom forms dimers under conditions similar to GCaMP3. St ructural and mutagenesis studies on Tyr-380 confirmed its importance in blocking the cpEGFP β-barrel holes. Our study proposes an efficient tool for mapping Ca(2+) signals in intact organs to facilitate the further improvement of GCaMP sensors.
Calcium
;
chemistry
;
metabolism
;
Calmodulin
;
chemistry
;
genetics
;
metabolism
;
Crystallography, X-Ray
;
Dimerization
;
Green Fluorescent Proteins
;
chemistry
;
genetics
;
metabolism
;
Histidine
;
chemistry
;
genetics
;
metabolism
;
Hydrogen-Ion Concentration
;
Myosin-Light-Chain Kinase
;
chemistry
;
genetics
;
metabolism
;
Peptide Fragments
;
chemistry
;
genetics
;
metabolism
;
Protein Structure, Tertiary
;
Recombinant Fusion Proteins
;
biosynthesis
;
chemistry
;
genetics
10.Construction and expression of bisbicistronic expression vector of novel endocrine and exocrine protein gene associated with breast cancer and IRES mediated gene EGFP.
Huamei YAN ; Yanping WANG ; Yu WANG ; Zhu WANG ; Hong ZHENG
Journal of Biomedical Engineering 2012;29(4):737-744
This experimental study was aimed to construct the recombinant bisbicistronic eukaryotic expression vector containing endocrine and exocrine protein (EECP) gene associated with breast cancer and enhanced green fluorescent protein (EGFP) gene. And then we transfected it into breast cancer cells MCF-7 to detect the expression of EECP protein and study preliminary biological function of EECP gene. The EECP sequence was cloned to pBluescript II SK (+) plasmid. After restriction endonuclease reaction of pBluescript II SK(+) plasmid, the EECP fragment was cloned to pIRES2-EGFP vector forming a recombinant eukaryotic expression vector named pEECP-IRES2-EGFP. The potential vector was identified by restriction endonuclease digestion and sequencing. Correct plasmid was extracted and transfected into breast cancer cells MCF-7. The expression of EECP protein was detected by western blot analysis. Its biological function was studied by MTT and Flow-cytometry. It turns out that the recombinant eukaryotic expression vector containing EECP gene and EGFP gene was constructed successfully, and it could transfect MCF-7 cells efficiently. It can get higher expression of EECP protein and higher cell proliferation, thus providing an important and convenient tool for studying the function of EECP gene in vitro and in vivo.
Base Sequence
;
Breast Neoplasms
;
genetics
;
pathology
;
Female
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
biosynthesis
;
genetics
;
Humans
;
MCF-7 Cells
;
Molecular Sequence Data
;
Proteins
;
analysis
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Ribosomes
;
chemistry
;
metabolism

Result Analysis
Print
Save
E-mail