1.Automatic brain segmentation in cognitive impairment: Validation of AI-based AQUA software in the Southeast Asian BIOCIS cohort.
Ashwati VIPIN ; Rasyiqah BINTE SHAIK MOHAMED SALIM ; Regina Ey KIM ; Minho LEE ; Hye Weon KIM ; ZunHyan RIEU ; Nagaendran KANDIAH
Annals of the Academy of Medicine, Singapore 2025;54(8):467-475
INTRODUCTION:
Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc., Seoul, Republic of Korea) segmentation software in a Southeast Asian community-based cohort with normal cognition, mild cognitive impairment (MCI) and dementia.
METHOD:
Study participants belonged to the community-based Biomarker and Cognition Study in Singapore. Participants aged between 30 and 95 years, having cognitive concerns, with no diagnosis of major psychiatric, neurological or systemic disorders who were recruited consecutively between April 2022 and July 2023 were included. Participants underwent neuropsychological assessments and structural MRI, and were classified as cognitively normal, with MCI or with dementia. MRI pre-processing using automated pipelines, along with human-based visual ratings, were compared against AI-based automated AQUA output. Default mode network grey matter (GM) volumes were compared between cognitively normal, MCI and dementia groups.
RESULTS:
A total of 90 participants (mean age at visit was 63.32±10.96 years) were included in the study (30 cognitively normal, 40 MCI and 20 dementia). Non-parametric Spearman correlation analysis indicated that AQUA-based and human-based visual ratings were correlated with total (ρ=0.66; P<0.0001), periventricular (ρ=0.50; P<0.0001) and deep (ρ=0.57; P<0.0001) white matter hyperintensities (WMH). Additionally, volumetric WMH obtained from AQUA and automated pipelines was also strongly correlated (ρ=0.84; P<0.0001) and these correlations remained after controlling for age at visit, sex and diagnosis. Linear regression analyses illustrated significantly different AQUA-derived default mode network GM volumes between cognitively normal, MCI and dementia groups. Dementia participants had significant atrophy in the posterior cingulate cortex compared to cognitively normal participants (P=0.021; 95% confidence interval [CI] -1.25 to -0.08) and in the hippocampus compared to cognitively normal (P=0.0049; 95% CI -1.05 to -0.16) and MCI participants (P=0.0036; 95% CI -1.02 to -0.17).
CONCLUSION
Our findings demonstrate high concordance between human-based visual ratings and AQUA-based ratings of WMH. Additionally, the AQUA GM segmentation pipeline showed good differentiation in key regions between cognitively normal, MCI and dementia participants. Based on these findings, the automated AQUA software could aid clinicians in examining MRI scans of patients with cognitive impairment.
Humans
;
Cognitive Dysfunction/pathology*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Middle Aged
;
Female
;
Aged
;
Artificial Intelligence
;
Software
;
Dementia/diagnostic imaging*
;
Aged, 80 and over
;
Adult
;
Singapore
;
Neuropsychological Tests
;
Brain/pathology*
;
Cohort Studies
;
Gray Matter/pathology*
;
Southeast Asian People
2.Illness duration-related developmental trajectory of progressive cerebral gray matter changes in schizophrenia.
Xin CHANG ; Zhihuan YANG ; Yingjie TANG ; Xiaoying SUN ; Cheng LUO ; Dezhong YAO
Journal of Biomedical Engineering 2025;42(2):293-299
In different stages of schizophrenia (SZ), alterations in gray matter volume (GMV) of patients are normally regulated by various pathological mechanisms. Instead of analyzing stage-specific changes, this study employed a multivariate structural covariance model and sliding-window approach to investigate the illness duration-related developmental trajectory of GMV in SZ. The trajectory is defined as a sequence of brain regions activated by illness duration, represented as a sparsely directed matrix. By applying this approach to structural magnetic resonance imaging data from 145 patients with SZ, we observed a continuous developmental trajectory of GMV from cortical to subcortical regions, with an average change occurring every 0.208 years, covering a time window of 20.176 years. The starting points were widely distributed across all networks, except for the ventral attention network. These findings provide insights into the neuropathological mechanism of SZ with a neuroprogressive model and facilitate the development of process for aided diagnosis and intervention with the starting points.
Humans
;
Schizophrenia/pathology*
;
Gray Matter/pathology*
;
Magnetic Resonance Imaging
;
Disease Progression
;
Male
;
Female
;
Brain/pathology*
;
Cerebral Cortex/pathology*
;
Adult
3.Evaluation of Tumor Blood Flow Using Alternate Ascending/Descending Directional Navigation in Primary Brain Tumors: A Comparison Study with Dynamic Susceptibility Contrast Magnetic Resonance Imaging
Hyeree PARK ; Joonhyuk LEE ; Sung Hong PARK ; Seung Hong CHOI
Korean Journal of Radiology 2019;20(2):275-282
OBJECTIVE: Alternate ascending/descending directional navigation (ALADDIN) is a novel arterial spin labeling technique that does not require a separate spin preparation pulse. We sought to compare the normalized cerebral blood flow (nCBF) values obtained by ALADDIN and dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) in patients with primary brain tumors. MATERIALS AND METHODS: Sixteen patients with primary brain tumors underwent MRI scans including contrast-enhanced T1-weighted imaging, DSC perfusion MRI, and ALADDIN. The nCBF values of normal gray matter (GM) and tumor areas were measured by both DSC perfusion MRI and ALADDIN, which were compared by the Wilcoxon signed rank test. Subgroup analyses according to pathology were performed with the Wilcoxon signed rank test. RESULTS: Higher mean nCBF values of GM regions in the bilateral frontal lobe, temporal lobe, and caudate were detected by ALADDIN than by DSC perfusion MRI (p <0.05). In terms of the mean or median nCBF values and the mean of the top 10% nCBF values from tumors, DSC perfusion MRI and ALADDIN did not statistically significantly differ either overall or in each tumor group. CONCLUSION: ALADDIN tended to detect higher nCBF values in normal GM, as well as higher perfusion portions of primary brain tumors, than did DSC perfusion MRI. We believe that the high perfusion signal on ALADDIN can be beneficial in lesion detection and characterization.
Brain Neoplasms
;
Cerebrovascular Circulation
;
Frontal Lobe
;
Glioma
;
Gray Matter
;
Humans
;
Magnetic Resonance Angiography
;
Magnetic Resonance Imaging
;
Pathology
;
Perfusion
;
Temporal Lobe
4.Progressive Grey Matter Volume Changes in Patients with Schizophrenia over 6 Weeks of Antipsychotic Treatment and Their Relationship to Clinical Improvement.
Xiao ZHANG ; Yuyanan ZHANG ; Jinmin LIAO ; Sisi JIANG ; Jun YAN ; Weihua YUE ; Dai ZHANG ; Hao YAN
Neuroscience Bulletin 2018;34(5):816-826
Cross-sectional and longitudinal studies have identified widespread and progressive grey matter volume (GMV) reductions in schizophrenia, especially in the frontal lobe. In this study, we found a progressive GMV decrease in the rostral medial frontal cortex (rMFC, including the anterior cingulate cortex) in the patient group during a 6-week follow-up of 40 patients with schizophrenia and 31 healthy controls well-matched for age, gender, and education. The higher baseline GMV in the rMFC predicted better improvement in the positive score on the Positive and Negative Syndrome Scale (PANSS), and this might be related to the improved reality-monitoring. Besides, a higher baseline GMV in the posterior rMFC predicted better remission of general symptoms, and a lesser GMV reduction in this region was correlated with better remission of negative symptoms, probably associated with ameliorated self-referential processing and social cognition. Besides, a shorter disease course and higher educational level contributed to better improvement in the general psychopathological PANSS score, and a family history was negatively associated with improvement of the negative and total PANSS scores. These phenomena might be important for understanding the neuropathological mechanisms underlying the symptoms of schizophrenia and for making clinical decisions.
Adult
;
Antipsychotic Agents
;
therapeutic use
;
Female
;
Frontal Lobe
;
diagnostic imaging
;
drug effects
;
pathology
;
Genetic Predisposition to Disease
;
Gray Matter
;
diagnostic imaging
;
drug effects
;
pathology
;
Humans
;
Image Processing, Computer-Assisted
;
Longitudinal Studies
;
Magnetic Resonance Imaging
;
Male
;
Organ Size
;
Psychiatric Status Rating Scales
;
Regression Analysis
;
Schizophrenia
;
diagnostic imaging
;
drug therapy
;
genetics
;
pathology
;
Time Factors
;
Treatment Outcome
5.An Experimental Infarct Targeting the Internal Capsule: Histopathological and Ultrastructural Changes.
Chang Woo HAN ; Kyung Hwa LEE ; Myung Giun NOH ; Jin Myung KIM ; Hyung Seok KIM ; Hyung Sun KIM ; Ra Gyung KIM ; Jongwook CHO ; Hyoung Ihl KIM ; Min Cheol LEE
Journal of Pathology and Translational Medicine 2017;51(3):292-305
BACKGROUND: Stroke involving the cerebral white matter (WM) has increased in prevalence, but most experimental studies have focused on ischemic injury of the gray matter. This study was performed to investigate the WM in a unique rat model of photothrombotic infarct targeting the posterior limb of internal capsule (PLIC), focusing on the identification of the most vulnerable structure in WM by ischemic injury, subsequent glial reaction to the injury, and the fundamental histopathologic feature causing different neurologic outcomes. METHODS: Light microscopy with immunohistochemical stains and electron microscopic examinations of the lesion were performed between 3 hours and 21 days post-ischemic injury. RESULTS: Initial pathological change develops in myelinated axon, concomitantly with reactive change of astrocytes. The first pathology to present is nodular loosening to separate the myelin sheath with axonal wrinkling. Subsequent pathologies include rupture of the myelin sheath with extrusion of axonal organelles, progressive necrosis, oligodendrocyte degeneration and death, and reactive gliosis. Increase of glial fibrillary acidic protein (GFAP) immunoreactivity is an early event in the ischemic lesion. WM pathologies result in motor dysfunction. Motor function recovery after the infarct was correlated to the extent of PLIC injury proper rather than the infarct volume. CONCLUSIONS: Pathologic changes indicate that the cerebral WM, independent of cortical neurons, is highly vulnerable to the effects of focal ischemia, among which myelin sheath is first damaged. Early increase of GFAP immunoreactivity indicates that astrocyte response initially begins with myelinated axonal injury, and supports the biologic role related to WM injury or plasticity. The reaction of astrocytes in the experimental model might be important for the study of pathogenesis and treatment of the WM stroke.
Astrocytes
;
Axons
;
Coloring Agents
;
Extremities
;
Glial Fibrillary Acidic Protein
;
Gliosis
;
Gray Matter
;
Internal Capsule*
;
Ischemia
;
Microscopy
;
Models, Animal
;
Models, Theoretical
;
Myelin Sheath
;
Necrosis
;
Neurons
;
Oligodendroglia
;
Organelles
;
Pathology
;
Plastics
;
Prevalence
;
Recovery of Function
;
Rupture
;
Stroke
;
White Matter
6.Imaging Observation of Scalp Acupuncture on Brain Gray Matter Injury in Stroke Patients with Cerebral Infarction.
Yi LANG ; Fang-yuan CUI ; Kuang-shi LI ; Zhong-jian TAN ; Yi-huai ZOU
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(3):294-299
OBJECTIVETo study features of brain gray matter injury in cerebral infarction patients and intervention of scalp acupuncture by using voxel-based morphology.
METHODSA total of 16 cerebral infarction patients were recruited in this study, and assigned to the scalp acupuncture group and the control group, 8 in each group. Another 16 healthy volunteers were recruited as a normal group. All patients received scanning of T1 structure. Images were managed using VBM8 Software package. Difference of the gray matter structure was compared among the scalp acupuncture group, the control group, and the healthy volunteers.
RESULTSCompared with healthy volunteers, gray matter injury of cerebral infarction patients mainly occurred in 14 brain regions such as cingulate gyrus, precuneus, cuneus, anterior central gyrus, insular lobe, and so on. They were mainly distributed in affected side. Two weeks after treatment when compared with healthy volunteers, gray matter injury of cerebral infarction patients in the scalp acupuncture group still existed in 8 brain regions such as bilateral lingual gyrus, posterior cingulate gyrus, left cuneus, right precuneus, and so on. New gray matter injury occurred in lingual gyrus and posterior cingulate gyrus. Two weeks after treatment when compared with healthy volunteers, gray matter injury of cerebral infarction patients in the control group existed in 23 brain regions: bilateral anterior cingulum, caudate nucleus, cuneate lobe, insular lobe, inferior frontal gyrus, medial frontal gyrus, precuneus, paracentral lobule, superior temporal gyrus, middle temporal gyrus, lingual gyrus, right postcentral gyrus, posterior cingulate gyrus, precentral gyrus, middle frontal gyrus, and so on. New gray matter injury still existed in 9 cerebral regions such as lingual gyrus, posterior cingulate gyrus, postcentral gyrus, and so on.
CONCLUSIONSBrain gray matter structure is widely injured after cerebral infarction. Brain gray matter volume gradually decreased as time went by. Combined use of scalp acupuncture might inhibit the progression of gray matter injury more effectively.
Acupuncture Therapy ; Brain ; physiopathology ; Brain Injuries ; therapy ; Cerebral Infarction ; therapy ; Gray Matter ; pathology ; Humans ; Magnetic Resonance Imaging ; Scalp ; Stroke ; therapy
7.Brain gray matter abnormalities revealed by voxel-based morphometry in patients with chronic low back pain.
Cui-Ping MAO ; Quan-Xin YANG ; Jian TANG ; Hua-Juan YANG ; Zhi-Lan BAI ; Qiu-Juan ZHANG ; Nadeem ZAHID
Journal of Southern Medical University 2016;36(8):1041-1047
OBJECTIVETo explore the morphometric abnormalities of brain gray matter (GM) in patients with chronic low back pain (CLBP).
METHODSThirty patients with CLBP and 30 healthy individuals were enrolled and examined with a 3.0 T magnetic resonance (MR) scanner. High-resolution T1 structural MR data were acquired and data analysis was performed using voxel-based morphometry (VBM) in FMRIB Software Library. The morphological differences were compared between the two groups.
RESULTSs Compared with the healthy control subjects, patients with CLBP showed decreased GM volumes in several brain cortical areas including the bilateral superior frontal gyrus, right frontal pole, left insular cortex, left middle and left inferior temporal gyrus (P<0.05, after TFCE correction). Increased GM volumes were found in the patients in the subcortical structures including the left thalamus, bilateral putamen, bilateral nucleus accumben and right caudate nucleus (P<0.05, after TFCE correction).
CONCLUSIONPatients with CLBP have different patterns of GM abnormalities in different brain regions, characterized by reduced GM volume in cerebral cortical regions and increased GM volume in the subcortical nuclei. Such changes might be associated with the maladaptation of the brain in chronic pain state.
Cerebral Cortex ; Frontal Lobe ; Gray Matter ; diagnostic imaging ; pathology ; Humans ; Low Back Pain ; physiopathology ; Magnetic Resonance Imaging ; Temporal Lobe ; Thalamus
8.Structural changes in the gray matter in patients with trigeminal neuralgia: a voxel-based morphometric study.
Jianhao YAN ; Meng LI ; Tianyue WANG ; Wenfeng ZHAN ; Guihua JIANG
Journal of Southern Medical University 2015;35(8):1180-1183
OBJECTIVETo investigate the changes in whole brain gray matter volume in patients with trigeminal neuralgia using voxel-based morphometry (VBM).
METHODSTwenty-eight patients with trigeminal neuralgia and 28 healthy controls underwent magnetic resonance imaging with a Philips 1.5T MRI scanner. VBM was used to compare the structural differences in the whole brain gray matter between the two groups based on the DARTEL after data preprocessing with SPM8 software package.
RESULTSCompared with the healthy controls, the patients with trigeminal neuralgia presented with decreased gray matter volume in several brain regions including the bilateral middle temporal gyrus, bilateral superior/middle frontal gyrus, left pre-/post-central gyrus, right fusiform and anterior cingulate gyrus.
CONCLUSIONSPatients with trigeminal neuralgia had abnormal gray matter volume in some brain regions associated with perception and processing of pain sensation. These changes may provide clues for further exploration of the neuropathogenic basis of trigeminal neuralgia.
Brain Mapping ; Case-Control Studies ; Frontal Lobe ; pathology ; Gray Matter ; pathology ; Humans ; Magnetic Resonance Imaging ; Temporal Lobe ; pathology ; Trigeminal Neuralgia ; pathology
9.Application of oil red O staining in spinal cord injury of rats.
Duo ZHANG ; Xu ZHAI ; Xi-jing HE
China Journal of Orthopaedics and Traumatology 2015;28(8):738-742
OBJECTIVETo explore the value of the application of oil red O staining in spinal cord injury (SCI) of rats.
METHODSWith simple randomization, 24 Spargue-Dawley male rats were divided into normal control group including 6, and SCI group including 18. Spinal cord was transected at spinal lever T10 to build SCI model. Six rats of SCI group were sacrificed randomly at 1, 2, 4 weeks after surgery. After the spinal cord tissue sections were made, oil red O staining methods were used to observe the changes at the end of transected spinal cord. Images were analyzed by Image-Pro Plus 6.0 and SPSS 20.0 software.
RESULTSThe oil red O staining of normal control group showed that white matter surrounded by myelin sheath was clear and obviously distinctive from grey matter. Uneven and strengthened staining in oil O was observed in grey matter of SCI group at 1, 2, 4 weeks post-SCI.
CONCLUSIONIt is a good method to label the myelin sheath in spinal cord and distinct white matter from grey matter by oil red O staining. Analysis of the images showed that lipid may become another target for drugs, which needs more researches.
Animals ; Azo Compounds ; Gray Matter ; pathology ; Male ; Nerve Fibers ; physiology ; Nerve Regeneration ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Injuries ; pathology ; Staining and Labeling
10.Prenatal diagnosis of fetal gray matter heteropia in one case and literature review.
Kui ZHAGN ; Shengli LI ; Huaxuan WEN ; Ying YUAN
Journal of Southern Medical University 2015;35(12):1770-1774
OBJECTIVETo investigate the prenatal ultrasonic manifestations of fetal gray matter heterotopias (FGMH) and evaluate the optimal method its prenatal diagnosis.
METHODSThe prenatal and postnatal ultrasound images and MRI images were analyzed for a fetus with a definitive diagnosis of FGMH. The detection rates of FGMH by prenatal ultrasound and MRI reported in literature were compared.
RESULTSWe identified 11 reports of FGMH from 1998 to 2015, involving 43 cases with prenatal diagnoses. Of the total of 44 cases (including our case), 32 that had been confirmed postpartum had prenatal ultrasound and MRI data, which showed a significantly lower detection rates of FGMH by prenatal ultrasound than by MRI (43.8% vs 93.8%, P<0.001).
CONCLUSIONPrenatal ultrasound can only detect subependymal heterotopia with characteristic manifestations, and the detection of other types of FGMH relies on MRI, which is currently the best option for prenatal diagnosis of FGMH.
Classical Lissencephalies and Subcortical Band Heterotopias ; diagnosis ; Female ; Fetal Diseases ; diagnosis ; Fetus ; Gray Matter ; pathology ; Humans ; Magnetic Resonance Imaging ; Pregnancy ; Prenatal Diagnosis ; Ultrasonography, Prenatal

Result Analysis
Print
Save
E-mail