1.The regulatory function of elevated interleukin 36γ to CD8+ T cell function in secondary fungal pneumonia patients with chronic obstructive pulmonary diseases.
Xiaoshan CUI ; Yinglan LI ; Tongxiu ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):637-643
Objectives To investigate interleukin 36γ (IL-36γ) expression, and analyze the influence of IL-36γ to CD8+ T cell activity in chronic obstructive pulmonary diseases (COPD) patients with secondary fungal pneumonia. Methods Peripheral blood was collected from 47 COPD patients, 39 COPD patients with secondary fungal pneumonia, and 20 controls. Bronchial alveolar lavage fluid (BALF) was isolated from 27 COPD patients with secondary fungal pneumonia. CD8+ T cells were purified. The levels of four IL-36 isoforms in plasma and BALF were measured by enzyme linked immunosorbent assay (ELISA). CD8+ T cells were stimulated with recombinant human IL-36γ. The levels of interferon γ(IFN-γ), tumor necrosis factor α(TNF-α), perforin and granzyme B in the cultured supernatants were measured by ELISA. Recombinant human IL-36γ-stimulated CD8+ T cells were co-cultured with NCI-H1882 cells in either direct cell-to-cell contact or TranswellTM manner. The levels of IFN-γ, TNF-α, and lactate dehydrogenase in the cultured supernatants were assessed. The percentage of target cell death was calculated. Results Plasma IL-36α, IL-36β, and IL-36γ levels were significantly elevated in both COPD group and COPD with secondary fungal pneumonia group compared with those in control group. However, only plasma IL-36γ level was higher in COPD with secondary fungal pneumonia group than that in COPD group [(200.11±99.95)pg/mL vs (53.03±87.18)pg/mL, P=0.023]. There was no remarkable difference in plasma IL-36 receptor antagonist level among three groups. IL-36γ level in BALF from infectious site was higher than that from non-infectious site in COPD with secondary fungal pneumonia group [(305.82±59.60)pg/mL vs (251.93±76.01)pg/mL, P=0.011]. IL-36γ stimulation enhanced IFN-γ, TNF-α, perforin and granzyme B secreted by CD8+ T cells. When IL-36γ-stimulated CD8+ T cells were directly mixed with NCI-H1882 cells for co-culture, the percentage of cell death was increased [(16.06±3.67)% vs (11.47±2.36)%, P=0.002]. When using TranswellTM plate for non-contact co-culture, IL-36γ-stimulated CD8+ T cell-mediated death of NCI-H1882 cells showed no significant difference compared to that without stimulation [(4.77±0.78)% vs (4.99±0.92)%, P=0.554]. Conclusion IL-36γ level in plasma and infectious site is elevated in COPD patients with secondary fungal pneumonia, which enhances the cytotoxicity of CD8+ T cells in peripheral blood and infectious microenviroment.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Interferon-gamma/metabolism*
;
Interleukin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung Diseases, Fungal/complications*
;
Bronchoalveolar Lavage Fluid/chemistry*
;
Perforin/metabolism*
;
Pneumonia/immunology*
;
Granzymes/metabolism*
2.Effect of type 2 innate lymphocytes on Treg and CD8+ T cell function through IL-9 in chronic lymphocytic leukemia.
Ruixue YANG ; Xuejiao ZENG ; Jianhua QU
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):673-679
Objective To investigate the differences of type 2 innate lymphocytes (ILC2) and interlukin 9 (IL-9) between chronic lymphocytic leukemia (CLL) patients and healthy controls, and to understand the effects of ILC2 on the function of regulatory T cells (Tregs), CD8+ T cells and CLL cells through IL-9. Methods Flow cytometry was used to detect the levels of ILC2 and Tregs in the peripheral blood of 45 newly diagnosed CLL patients and 24 healthy controls, and the expressions of granzyme B and perforin in CD8+ T cells in the peripheral blood of 28 patients and 15 healthy controls; ELISA was used to detect the level of IL-9 in the serum. ILC2 of patients and healthy controls was sorted by immunomagnetic beads and cultured separately, and the level of IL-9 in the culture supernatant was measured by ELISA. ILC2 sorted from CLL patients and healthy control-derived peripheral blood mononuclear cells(PBMCs) were co-cultured with the B cell leukemia MEC-1 cells, one group was supplemented with IL-9 antibody and the other group was not. After 72 hours of culture, the ratio of Tregs, programmed death 1 (PD-1), T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), cytotoxic T lymphocyte antigen 4 (CTLA-4) on Tregs, granzyme B and perforin in CD8+ T cells were measured by flow cytometry, IL-9 level of the culture supernatant was measured by ELISA, the apoptosis of MEC-1 cells was measured by Annexin V-PI. Results Compared with the healthy control group, the levels of ILC2, Tregs and IL-9 in the CLL group increased significantly. The levels of granzyme B and perforin in CD8+ T cells were positively correlated in the peripheral blood of CLL patients. Compared with the healthy control group, IL-9 levels in the supernatant of sorted ILC2 from CLL patients increased. In the anti-IL9 antibody group, the level of PD-1 and TIGIT on Tregs decreased, and the level of granzyme B in CD8+ T cells increased significantly. The level of IL-9 in the anti-IL9 antibody group decreased statistically. And MEC-1 cells showed increased early apoptotic rate in the anti-IL9 antibody group statistically. Conclusion In CLL, ILC2 affects CD8+ T cells and Tregs through IL-9, which weakens the anti-tumor effect of CD8+ T cells, enhances the immunosuppressive effect of Tregs, and plays a role in the occurrence and development of CLL disease.
Humans
;
Leukemia, Lymphocytic, Chronic, B-Cell/immunology*
;
CD8-Positive T-Lymphocytes/immunology*
;
T-Lymphocytes, Regulatory/immunology*
;
Middle Aged
;
Male
;
Female
;
Interleukin-9/blood*
;
Aged
;
Granzymes/metabolism*
;
Perforin/metabolism*
;
Immunity, Innate
;
Adult
;
Lymphocytes/immunology*
3.Study on the effect of ATPIF1 on the anti-tumor activity of CAR-NK92 cells by regulating glycolytic capacity.
Biao LIU ; Xue GONG ; Biliang HU ; Chunlei GUO ; Genshen ZHONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):865-874
Objective To investigate the effect of ATP synthase inhibitory factor 1 (ATPIF1) on the antitumor activity of chimeric antigen receptor (CAR)-NK92 cells. Methods HER2-targeted CAR-NK92 cells with ATPIF1 overexpression or knockdown were constructed. CAR-positive expression rate was detected by flow cytometry. Cell proliferation capacity was measured using CCK-8 assay. Glycolytic capacity was analyzed by Seahorse metabolic analyzer. Mitochondrial membrane potential levels were detected using JC-1 probe. Target cell lysis rate was evaluated by firefly luciferase reporter assay. Expression levels of CD107a, natural-killer group 2 member D (NKG2D), granzyme B (GzmB), perforin, and interleukin 2 (IL-2) were detected via flow cytometry. Quantitative real-time PCR was used to measure the expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), tumor necrosis factor α (TNF-α), ATPIF1, and hexokinase 1 (HK1). The impact of glycolytic inhibition by 2-Deoxy-D-glucose (2-DG) on CAR-NK92 antitumor capacity was examined. Results Successfully generated HER2-targeting control CAR-NK92 cells, as well as ATPIF1-overexpressing and ATPIF1 knockdown CAR-NK92 cells. The ATPIF1-overexpressing CAR-NK92 cells showed significantly enhanced target cell lysis rate, elevated expression levels of NKG2D and CD107a, increased secretion capacities of Granzyme B (GzmB) and IL-2, and upregulated mRNA expression levels of IFIT1 and TNF-α, while ATPIF1-knockdown cells exhibited opposite effects. ATPIF1 overexpression induced metabolic reprogramming in CAR-NK92 cells, manifested by significantly decreased mitochondrial membrane potential (δpsim), markedly upregulated HK1 mRNA expression, and enhanced basal glycolysis and glycolytic capacity. After glycolysis inhibition with 2-DG (5 μmol/L), both ATPIF1-overexpressing and knockdown CAR-NK92 cells showed no significant differences in NKG2D and CD107a expression levels compared to control cells. Conclusion ATPIF1 regulates the antitumor activity of CAR-NK92 cells through modulating glycolytic metabolism. Overexpression of ATPIF1 can enhance the antitumor efficacy of CAR-NK92 cells.
Humans
;
Glycolysis
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Granzymes/genetics*
;
Hexokinase/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/genetics*
;
Cell Proliferation
;
NK Cell Lectin-Like Receptor Subfamily K/genetics*
;
Membrane Potential, Mitochondrial
4.Knocking Out DNMT1 Enhances the Inhibitory Effect of NK Cells on Acute Myeloid Leukemia.
Kun WU ; Jia-Li HUANG ; Shen-Ju CHENG ; Yan-Hong LI ; Yun ZENG ; Ming-Xia SHI
Journal of Experimental Hematology 2025;33(3):653-659
OBJECTIVE:
To explore the effect and mechanism of DNA methyltransferase 1 (DNMT1) knockout on the inhibition of acute myeloid leukemia (AML) by natural killer (NK) cells.
METHODS:
The peripheral blood NK cells of AML patients and controls were collected, and the mRNA and protein level of DNMT1 were measured by PCR and Western blot, respectively. The DNMT1 knockout mice were constructed to obtain NKDNMT1-/- cells. The NK cells were stimulated with interleukin (IL)-12, IL-15, and IL-18 to construct memory NK cells, and then the interferon-γ (IFN-γ) levels were measured by ELISA. After co-culturing with memory NK cells and HL60 cells, the killing effect of NKDNMT1-/- cells on HL60 cells was detected by LDH assay. Then, the HL60 cell apoptosis and NK cell NKG2D level were measured by flow cytometry. The perforin and granzyme B protein levels of NK cells were measured by Western blot. The AML model mice were constructed by injecting HL60 cells into the tail vein, meanwhile, memory NK cells were also injected, and then the mouse weights, CD33 positive rates, and survival time were detected.
RESULTS:
The mRNA and protein levels of DNMT1 in NK cells of AML patients were significantly higher than those in the control group (both P < 0.01), while the IFN-γ level induced by interleukin was significantly lower than that in the control group (P < 0.05). Compared with NKDNMT1+/+ cells, the ability of NKDNMT1-/- cells to secrete IFN-γ after interleukin stimulation was significantly increased (P < 0.05). The killing and apoptosis-inducing effects of NKDNMT1-/- cells on HL60 cells were significantly stronger than those of NKDNMT1+/+ cells (both P < 0.05). The NKG2D level and expression of perforin and granzyme B of NKDNMT1-/- cells were significantly increased compared with NKDNMT1+/+ cells (all P < 0.05). Compared with AML mice injected with NKDNMT1+/+ cells, AML mice injected with NKDNMT1-/- cells showed significantly increased body weight, decreased CD33 positive rate, and prolonged survival time (all P < 0.05).
CONCLUSION
Knocking out DNMT1 can enhance the inhibitory effect of NK cells on AML, which may be related to enhancing NK cell memory function.
Killer Cells, Natural/metabolism*
;
Animals
;
Leukemia, Myeloid, Acute
;
Humans
;
DNA (Cytosine-5-)-Methyltransferase 1
;
Mice
;
Mice, Knockout
;
HL-60 Cells
;
Apoptosis
;
Interferon-gamma/metabolism*
;
Granzymes/metabolism*
;
Perforin/metabolism*
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
5.Formononetin enhances the antitumor effect of H22 hepatoma transplanted mice.
Mi LI ; Chengzhi JIANG ; Jianting CHEN ; Junyan WANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1063-1068
Objective To explore the effect of formononetin on immunity of mice with transplanted H22 hepatocarcinoma. Methods Male C57BL/6 mice were subcutaneously inoculated with H22 cells (4×105) to establish a tumor-bearing mouse model. The mice were treated with formononetin [10 mg/(kg.d)] or [50 mg/(kg.d)] for 28 days, and then the tumor inhibition rate was calculated. Carrilizumab was used as a positive control drug. The expressions of CD8, granzyme B and forkbox transcription factor 3 (FOXP3) in HCC tissues were analyzed by immunohistochemical staining. The mRNA and protein expression of programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) in HCC tissues were detected by real-time PCR or Western blot analysis, respectively. The serum levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) were detected by ELISA. Results Formononetin increased the tumor inhibition rate and the positive rate of CD8 and granzyme B staining in tumor-bearing mice. There was no significant difference in the positive rate of FOXP3 staining in tumor tissues of mice in each group. Formononetin decreased the levels of IL-10 and TGF-β in serum of tumor-bearing mice, and decreased the relative expression of mRNA and protein of PD-1 and PD-L1 in tumor tissue of tumor-bearing mice. Conclusion Formononetin can activate CD8+ T cells and reduce the release of immunosuppressive factors in regulatory T cells by blocking PD-1/PD-L1 pathway and play an antitumor role.
Male
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/genetics*
;
Interleukin-10/genetics*
;
B7-H1 Antigen
;
Granzymes/genetics*
;
Programmed Cell Death 1 Receptor/metabolism*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Mice, Inbred C57BL
;
Transforming Growth Factor beta/genetics*
;
RNA, Messenger/metabolism*
;
Forkhead Transcription Factors/genetics*
;
Cell Line, Tumor
6.Construction of NKG2D CAR-NK92 cells and its killing effect on multiple myeloma cells.
Jing LONG ; Rong ZHENG ; Sishi YE ; Shanwen KE ; Deming DUAN ; Cheng WEI ; Jimin GAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):577-585
Objective This study aims to construct and identify the chimeric antigen receptor NK92 (CAR-NK92) cells targeting NKG2D ligand (NKG2DL) (secreting IL-15Ra-IL-15) and verify the killing activity of NKG2D CAR-NK92 cells against multiple myeloma cells. Methods The extracellular segment of NKG2D was employed to connect 4-1BB and CD3Z, as well as IL-15Ra-IL-15 sequence to obtain a CAR expression framework. The lentivirus was packaged and transduced into NK92 cells to obtain NKG2D CAR-NK92 cells. The proliferation of NKG2D CAR-NK92 cells was detected by CCK-8 assay, IL-15Ra secretion was detected by ELISA and killing efficiency was detected by lactate dehydrogenase (LDH) assay. The molecular markers of NKp30, NKp44, NKp46, the ratio of apoptotic cell population, CD107a, and the secretion level of granzyme B and perforin were detected using flow cytometry. In addition, the cytotoxic mechanism of NKG2D CAR-NK92 cells on the tumor was verified by measuring the degranulation ability. Moreover, after NKG2D antibody inhibited effector cells and histamine inhibited tumor cells, LDH assay was utilized to detect the effect on cell-killing efficiency. Finally, the multiple myeloma tumor xenograft model was constructed to verify its anti-tumor activity in vivo. Results Lentiviral transduction significantly increased NKG2D expression in NK92 cells. Compared with NK92 cells, the proliferation ability of NKG2D CAR-NK92 cells was weaker. The early apoptotic cell population of NKG2D CAR-NK92 cells was less, and NKG2D CAR-NK92 cells had stronger cytotoxicity to multiple myeloma cells. Additionally, IL-15Ra secretion could be detected in its culture supernatant. NKp44 protein expression in NKG2D CAR-NK92 cells was clearly increased, demonstrating an enhanced activation level. Inhibition test revealed that the cytotoxicity of CAR-NK92 cells to MHC-I chain-related protein A (MICA) and MICB-positive tumor cells was more dependent on the interaction between NKG2D CAR and NKG2DL. After stimulating NKG2D CAR-NK92 cells with tumor cells, granzyme B and perforin expression increased, and NK cells obviously upregulated CD107α. Furthermore, multiple myeloma tumor xenograft model revealed that the tumors of mice treated with NKG2D CAR-NK92 cells were significantly reduced, and the cell therapy did not sensibly affect the weight of the mice. Conclusion A type of CAR-NK92 cell targeting NKG2DL (secreting IL-15Ra-IL-15) is successfully constructed, indicating the effective killing of multiple myeloid cells.
Humans
;
Mice
;
Animals
;
Receptors, Chimeric Antigen/genetics*
;
Interleukin-15
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
;
Granzymes
;
Cell Line, Tumor
;
Multiple Myeloma/therapy*
;
Perforin
7.Potential Utility of FDG PET-CT as a Non-invasive Tool for Monitoring Local Immune Responses.
Seungho LEE ; Seohee CHOI ; Sang Yong KIM ; Mi Jin YUN ; Hyoung Il KIM
Journal of Gastric Cancer 2017;17(4):384-393
PURPOSE: The tumor microenvironment is known to be associated with the metabolic activity of cancer cells and local immune reactions. We hypothesized that glucose metabolism measured by 2-deoxy-2-(¹⁸F)fluoro-D-glucose (¹⁸F-FDG) positron emission tomography (PET)-computed tomography (CT) (¹⁸F-FDG PET-CT) would be associated with local immune responses evaluated according to the presence of tumor infiltrating lymphocytes (TILs). MATERIALS AND METHODS: We retrospectively reviewed 56 patients who underwent ¹⁸F-FDG PET-CT prior to gastrectomy. In resected tumor specimens, TIL subsets, including cluster of differentiation (CD) 3, CD4, CD8, Forkhead box P3 (Foxp3), and granzyme B, were subjected to immunohistochemical analysis. The prognostic nutritional index (PNI) was calculated as: (10×serum albumin value)+(0.005×peripheral lymphocyte counts). Additionally, the maximum standard uptake value (SUVmax) was calculated to evaluate the metabolic activity of cancer cells. RESULTS: The SUVmax was positively correlated with larger tumor size (R=0.293; P=0.029) and negatively correlated with PNI (R=−0.407; P=0.002). A higher SUVmax showed a marginal association with higher CD3 (+) T lymphocyte counts (R=0.227; P=0.092) and a significant association with higher Foxp3 (+) T lymphocyte counts (R=0.431; P=0.009). No other clinicopathological characteristics were associated with SUVmax or TILs. Survival analysis, however, indicated that neither SUVmax nor Foxp3 held prognostic significance. CONCLUSIONS: FDG uptake on PET-CT could be associated with TILs, especially regulatory T cells, in gastric cancer. This finding may suggest that PET-CT could be of use as a non-invasive tool for monitoring the tumor microenvironment in patients with gastric cancer.
Fluorodeoxyglucose F18
;
Gastrectomy
;
Glucose
;
Granzymes
;
Humans
;
Lymphocyte Count
;
Lymphocytes
;
Lymphocytes, Tumor-Infiltrating
;
Metabolism
;
Nutrition Assessment
;
Positron-Emission Tomography
;
Retrospective Studies
;
Stomach Neoplasms
;
T-Lymphocytes, Regulatory
;
Tumor Microenvironment
8.Diffuse large B-cell lymphoma with aberrant expression of CD56: a clinicopathologic and immunohistochemical study.
Jianchao WANG ; Wenyan ZHANG ; Wenshuang DING ; Limin GAO ; Jiaqi YAN ; Dianying LIAO ; Sha ZHAO ; Weiping LIU
Chinese Journal of Pathology 2016;45(2):78-82
OBJECTIVETo study the clinicopathologic features and significance of aberrant CD56 expression in diffuse large B-cell lymphoma (DLBCL).
METHODSThe clinical and pathologic profiles of 10 cases of DLBCL with aberrant expression of CD56 were investigated. Immunohistochemical staining, in-situ hybridization for Epstein-Barr virus encoded RNA and gene rearrangement for IgH and Igκ were carried out.
RESULTSThere were 6 male and 4 female patients. The medium age of patients was 46 years. All of them presented with extranodal lymphoma involvement, with gastrointestinal tract being the commonest site (5/10). Histologic examination showed that most of the atypical lymphoid cells were centroblast-like and demonstrated a diffuse growth pattern. Apoptosis and necrosis were identified in some cases. Immunohistochemical study showed that the tumor cells were positive for CD20 or CD79α and aberrantly expressed CD56. Five cases had the GCB phenotype while the remaining cases had the non-GCB phenotype, according to Hans classification. Bcl-6 was positive in most cases (9/10). All cases showed a high proliferation index by Ki-67. The tumor cells were negative for CD3ε, CD138 and granzyme B. In-situ hybridization for Epstein-Barr virus encoded RNA was performed in 7 cases and none of them showed positive signals. IgH gene rearranged bands were detected in 4 cases (4/6) and Igκ was detected in 3 cases (3/6). Follow-up data were available in 8 patients. Two patients died of disease progression within 5 to 13 months after diagnosis and the other 6 patients were alive 8 to 60 months after therapy.
CONCLUSIONSDLBCL with aberrant expression of CD56 is rare. Most of them present with extranodal involvement, show high frequency of bcl-6 expression and high proliferation index. The patients often have good response to chemotherapy.
Antigens, CD20 ; metabolism ; Apoptosis ; CD56 Antigen ; metabolism ; CD79 Antigens ; metabolism ; Disease Progression ; Female ; Gene Rearrangement ; Granzymes ; metabolism ; Herpesvirus 4, Human ; genetics ; Humans ; Immunophenotyping ; In Situ Hybridization ; Lymphoma, Large B-Cell, Diffuse ; genetics ; metabolism ; pathology ; Male ; Middle Aged ; Necrosis ; Phenotype ; Proto-Oncogene Proteins c-bcl-6 ; metabolism ; RNA, Viral ; analysis
9.Effects of Iron Overload on the Apoptosis and Function of Splenic CD8+ T Cells in Mice.
Jie CHEN ; Ming-Feng ZHAO ; Xiao-Li CAO ; Juan-Xia MENG ; Yi XING ; Xiao-Yuan HE ; Xin JIN ; Ping XU ; Yan-Yu JIANG
Journal of Experimental Hematology 2016;24(3):903-908
OBJECTIVETo investigate the effects of iron overload on apoptosis and function of splenic CD8+ T cells in mice.
METHODSForty C57BL/6 mice were randomly divided into control groups, Iron overload (IO), IO+NAC and IO+DFX groups. The iron overload model was established by intraperitoneal injection of iron dextran, and saline was injected as the control. The levels of intracellular reactive oxygen species (ROS) and labile iron pool (LIP) were analyzed by measuring the mean fluorescence intensity (MFI) of 2-7 dichlorofluorescein (DCF) or calcein. The ratio of CD8+ T cells and the levels of IFN-γ, TNF-α, Granzyme-B, and perforin in CD8+ T cells were detected by flow cytometry. The CD8+ T cell apoptosis was determined by flow cytometry with Annexin V/PI double staining. Real-time PCR was used to detect the expression of IFN-γ, TNF-α, Granzyme-B, perforin, BCL-2, and bax at mRNA level in CD8+ T cells.
RESULTSIron overload was found by spleen iron staining and flow cytometry. The level of intracellular ROS in iron overload (IO) groups was higher than that of the control groups (P<0.01). The percentage of CD8+ T cells in spleen from mice with IO was lower than that in control groups (P<0.05). The expression of IFN-γ and Granzyme-B in CD8+ T cells in IO group were lower than that in control group, the expression of IFN-γ and Granzyme-B at mRNA level in CD8+ T cells was lower than that of control group (P<0.05). CD8+ T cell apoptosis in iron overload group was significantly higher than that in control groups (P<0.01); the expression of BCL-2 at mRNA level was lower than that in control group, but the expression of BAX at mRNA level was higher than that in control group (P<0.05). These effects could be reversed after treating iron-overloaded mice with DFX or NAC.
CONCLUSIONIron overload can inhibit the ratio of CD8+ T cells of splenic cells in mice, decrease the expression of IFN-γ, Granzyme-B, increase the apoptosis of CD3+ CD8+/CD8-. These effects may be regulated through increasing the intracellular ROS level, and can be partially reversed after treating iron-overloaded mice with DFX or NAC.
Animals ; Apoptosis ; CD8-Positive T-Lymphocytes ; cytology ; pathology ; Granzymes ; metabolism ; Interferon-gamma ; metabolism ; Iron ; metabolism ; Iron Overload ; physiopathology ; Mice ; Mice, Inbred C57BL ; Perforin ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Random Allocation ; Reactive Oxygen Species ; metabolism ; Spleen ; cytology ; Tumor Necrosis Factor-alpha ; metabolism ; bcl-2-Associated X Protein ; metabolism
10.Changes in serum protease and cytokine in patients with silicosis, tuberculosis, and lung cancer.
Rongming MIAO ; Bangmei DING ; Dehong YOU ; Qingjun YOU ; Yingyi ZHANG ; Zhonghua FANG ; Feng GAO ; Guiliang QIAN ; Rong CAO ; Qian XIA ; Yong LI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(8):598-600
OBJECTIVETo investigate the changes in serum protease and cytokine in patients with silicosis, tuberculosis, and lung cancer.
METHODSSerum samples of patients with silicosis, tuberculosis, and lung cancer were collected. The variation trends of the expression of granzyme A, cathepsin G, apolipoprotein A, and interferon-β (IFN-β) were analyzed using enzyme-linked immunosorbent assay.
RESULTSThe concentration of apolipoprotein A of the silicosis group was 200 µg/ml, significantly higher than those of the tuberculosis and lung cancer groups (P < 0.05), and the lung cancer group had a significantly higher concentration of apolipoprotein A compared with the tuberculosis group (P < 0.05). The silicosis group had significantly higher expression of cathepsin G compared with the tuberculosis and lung cancer groups (P < 0.05), and the tuberculosis group and lung cancer group showed no significant difference in the concentration of cathepsin G (P > 0.05). The tuberculosis group had a significantly higher concentration of granzyme A than the silicosis and lung cancer groups (P < 0.05), and the silicosis group and lung cancer group had similar protein concentration trends (P > 0.05). The tuberculosis group and lung cancer group had significantly higher concentration of IFN-β compared with the silicosis group (P < 0.05), and the tuberculosis group and lung cancer group showed no significant difference in IFN-β concentration (P > 0.05).
CONCLUSIONThis study may offer diagnostic markers for the clinical diagnosis of silicosis, tuberculosis, and lung cancer, and could provide a basis for the research, as well as potential molecular targets for the diagnosis and treatment of these diseases.
Biomarkers ; Cathepsin G ; metabolism ; Cytokines ; blood ; Endopeptidases ; blood ; Enzyme-Linked Immunosorbent Assay ; Granzymes ; metabolism ; Humans ; Interferon-beta ; metabolism ; Lung Neoplasms ; enzymology ; Silicosis ; enzymology ; Tuberculosis ; enzymology

Result Analysis
Print
Save
E-mail