1.Efficacy and Safety of DCAG Regimen in Patients with Relapsed/Refractory Acute Myeloid Leukemia.
Hui-Sheng ZHOU ; Yu-Qing LI ; Yu-Xin WANG ; Ya-Lei HU ; Kai-Li MIN ; Chun-Ji GAO ; Dai-Hong LIU ; Xiao-Ning GAO
Journal of Experimental Hematology 2025;33(1):9-19
OBJECTIVE:
To evaluate the efficacy and safety of DCAG (decitabine, cytarabine, anthracyclines, and granulocyte colony-stimulating factor) regimen in the treatment of patients with relapsed/refractory (R/R) acute myeloid leukemia (AML).
METHODS:
The clinical data of 64 R/R AML patients received treatment at Chinese PLA General Hospital from January 1st, 2012 to December 31st, 2022 were retrospectively analyzed. Primary endpoints included efficacy measured by overall response rate (ORR) and safety. Secondary endpoints included overall survival (OS), event-free survival (EFS) and duration of response (DOR). The patients were followed from enrollment until death, or the end of last follow-up (June 1st, 2023), whichever occurred first.
RESULTS:
Sixty-four patients who failed prior therapy were enrolled and completed 1 cycle, and 26 and 5 patients completed 2 and 3 cycles, respectively. Objective response rate was 67.2% [39: complete remission (CR)/CR with incomplete hematologic recovery (CRi), 4: partial remission (PR)]. With a median follow-up of 62.0 months (1.0-120.9), the median overall survival (OS) was 23.3 and event-free survival was 10.6 months. The median OS was 51.7 months (3.4-100.0) in responders (CR/CRi/PR) while it was 8.4 months (6.1-10.7) in nonresponders ( P <0.001). Grade 3-4 hematologic toxicities were observed in all patients. Four patients died from rapid disease progression within 8 weeks after chemotherapy.
CONCLUSION
The DCAG regimen represents a feasible and effective treatment for R/R AML.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Cytarabine/administration & dosage*
;
Granulocyte Colony-Stimulating Factor/administration & dosage*
;
Retrospective Studies
;
Male
;
Female
;
Decitabine
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Anthracyclines/administration & dosage*
;
Middle Aged
;
Adult
;
Treatment Outcome
;
Aged
;
Recurrence
2.The Influence of COVID-19 Infection on the Mobilization and Collection of Autologous Peripheral Blood Stem Cells in Patients with Multiple Myeloma.
Guo-Rong WANG ; Guang-Zhong YANG ; Yun LENG ; Yin WU ; Ai-Jun LIU ; Wen-Ming CHEN
Journal of Experimental Hematology 2025;33(2):455-462
OBJECTIVE:
To analyze the effect of COVID-19 infection on the mobilization and collection of autologous peripheral blood stem cells in patients with multiple myeloma.
METHODS:
The general baseline data, treatment factors before mobilization collection, collection status, and treatment overview after collection of autologous peripheral blood stem cells at Beijing Chaoyang Hospital affiliated with Capital Medical University from January 1, 2020 to July 15, 2023 were analyzed.
RESULTS:
269 patients underwent mobilization and collection of autologous peripheral blood stem cells. Among them, 32 cases with COVID-19 infection history (COVID-19 group) and 237 cases without COVID-19 infection history (non-COVID-19 group). In the COVID-19 group, 17 cases were treated with chemotherapy (etoposide)+G-CSF, and 15 cases were treated with plerixafor +G-CSF. In the non-COVID-19 group, 214 cases were treated with chemotherapy +G-CSF, 17 cases were treated with plerixafor +G-CSF, and 6 cases were treated with chemotherapy + plerixafor +G-CSF. The number of CD34+ cells, collection success rate, and excellence rate in the COVID-19 group and the non-COVID-19 group were [5.52 (0.94-26.87) vs 4.80 (0.53-37.20)]×106/kg (P =0.610), (93.8% vs 85.2%) (P =0.275), (62.5% vs 49.4%) (P =0.190), respectively. Among 113 patients mobilized with etoposide +G-CSF, the number of CD34+ cells, success rate, and excellence rate collected from COVID-19 infection (17 cases) and non-COVID-19 infection (96 cases) were [7.54 (2.66-26.87) vs 7.78 (2.26-37.20)]×106/kg (P =0.847), (100.0% vs 100.0%) (no P value), (82.4% vs 86.5%) (P =0.655), respectively. Among 32 patients mobilized by plerixafor +G-CSF, the number of CD34+ cells, success rate and excellence rate of COVID-19 infection (15 cases) and non-COVID-19 infection (17 cases) were [3.82 (0.94-7.27) vs 4.11 (0.53-9.05)]×106/kg (P =0.821), (86.7% vs 88.2%) (P =0.893), (40.0% vs 35.3%) (P =0.784), respectively. In 32 patients with COVID-19 infection, the number of CD34+ cells collected by etoposide +G-CSF (17 cases) and plerixafor +G-CSF (15 cases), as well as the success rate and excellence rate were [7.54 (2.66-26.87) vs 3.82(0.94-7.27)]×106/kg (P =0.004), (100.0% vs 86.7%) (P =0.120), (82.4% vs 40.0%) (P =0.014), respectively. By 2023.7.31, 232 patients (86.2%, 232/269) had received transplantation, including 24 patients in the COVID-19 group and 208 patients in the non-COVID-19 group. The median number of CD34+ cells infused in the two groups was [3.67 (2.50-13.44) vs 3.11(1.12-19.89)]×106/kg (P =0.058), the median days of neutrophil engraftment [11(9-13) vs 11(9-17)] (P =0.674), the median days of platelet engraftment [11(0-23), 12(0-43)] (P =0.279), respectively.
CONCLUSION
The history of COVID-19 infection did not affect the PBSC mobilization, collection and transplantation of patients with myeloma. In patients with COVID-19 infection, the results of chemotherapy mobilization with etoposide seems to be better than that of plerixafor mobilization, but further research is needed to clarify.
Humans
;
COVID-19/complications*
;
Multiple Myeloma/complications*
;
Hematopoietic Stem Cell Mobilization
;
Transplantation, Autologous
;
Granulocyte Colony-Stimulating Factor/therapeutic use*
;
Peripheral Blood Stem Cell Transplantation
;
SARS-CoV-2
;
Middle Aged
;
Peripheral Blood Stem Cells
;
Male
;
Female
;
Cyclams
;
Benzylamines
3.Clinical Efficacy of CAG Regimen Combined with Venetoclax, Chidamide, and Azacitidine in the Treatment of Elderly Patients with Acute Myeloid Leukemia.
Qing-Yang LIU ; Yu JING ; Meng LI ; Sai HUANG ; Yu-Chen LIU ; Ya-Nan WEN ; Jing-Jing YANG ; Wen-Jing GAO ; Ning LE ; Yi-Fan JIAO ; Xia-Wei ZHANG ; Li-Ping DOU
Journal of Experimental Hematology 2025;33(4):945-950
OBJECTIVE:
To explore the efficacy and adverse reactions of CAG regimen combined with venetoclax, chidamide, and azacitidine in the treatment of elderly patients with acute myeloid leukemia (AML).
METHODS:
15 elderly AML patients aged≥60 years old who were admitted to the Hematology Department of our hospital from May 2022 to October 2023 were treated with the CAG regimen combined with venetoclax, chidamide and azacitidine, and the efficacy, treatment-related adverse events, overall survival (OS) and event-free survival (EFS) were analyzed.
RESULTS:
After one course of treatment, 11 out of 15 patients achieved complete response (CR), 3 patients achieved CR with incomplete hematologic recovery (CRi), and 1 patient died due to prior infection before efficacy evaluation, and the overall response rate (ORR) was 93.3% (14/15). The median follow-up time was 131 (19-275) days, with median OS and EFS both remaining unreached. Next-generation sequencing (NGS) analysis showed that among the 15 patients, 13 were detected with gene mutations, and there were 7 genes with mutation frequencies of more than 10%, including ASXL1 (4 cases), RUNX1 (4 cases), BCOR (3 cases), DNMT3A (3 cases), STAG2 (2 cases), IDH1/2 (2 cases), and TET (2 cases). Among the 13 patients with detectable mutations, 12 patients achieved composite response (CR+CRi). The average recovery time of white blood cell count was 14.6 days after chemotherapy, and the average recovery time of platelets was 7.7 days after chemotherapy. The main adverse event was myelosuppression, with 10 patients accompanied by infection. Except for 1 patient who died due to septic shock during chemotherapy, no patients experienced serious complications such as heart, liver, or kidney damage during the treatment process.
CONCLUSION
The CACAG+V regimen, which combines the CAG regimen with venetoclax, chidamide, and azacitidine, can be applied in the treatment of elderly AML patients, demonstrating good safety and induction remission rate.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use*
;
Sulfonamides/therapeutic use*
;
Aminopyridines/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Azacitidine/therapeutic use*
;
Aged
;
Benzamides/therapeutic use*
;
Male
;
Female
;
Treatment Outcome
;
Middle Aged
;
Cytarabine
;
Aclarubicin
;
Granulocyte Colony-Stimulating Factor
4.Effective Salvage Mobilization of Peripheral Blood Stem Cells with High-Dose Etoposide in Newly Diagnosed Multiple Myeloma Patients Who Failed Initial Mobilization with High-Dose Cyclophosphamide.
Yue-Qi WANG ; Shi-Hua ZHAO ; Yi MA ; Xi-Lin CHEN ; Shun-Zong YUAN ; Na-Na CHENG ; Guang-Ning SHI ; Wen-Rong HUANG ; Xiu-Bin XIAO
Journal of Experimental Hematology 2025;33(5):1380-1385
OBJECTIVE:
To explore the safety and efficacy of high-dose etoposide (VP-16) combined with recombinant human granulocyte colony-stimulating factor (rhG-CSF) as salvage mobilization for peripheral blood stem cells (PBSC) in newly diagnosed multiple myeloma (NDMM) patients.
METHODS:
From April 2021 to May 2023, eight NDMM patients who had failed to yield sufficient PBSC during initial mobilization with high-dose cyclophosphamide (CTX) combined with rhG-CSF underwent salvage mobilization with 1.2 g/m2 etoposide combined with rhG-CSF 10 μg/(kg·d). The effects and adverse reactions of initial mobilization and salvage mobilization were analyzed.
RESULTS:
For salvage mobilization and initial mobilization, the numbers of PBSC collections were 16 and 18, respectively. The mean value of total collected CD34+ cells were (11.90±5.75)×106/kg and (1.67±0.75)×106/kg (P =0.0010) in salvage mobilization group and initial mobilization group, respectively. The proportion of patients with a total collection of CD34+ cell count≥2×106/kg were 100% and 37.5% (P =0.0625), and the proportion of patients with a total collection of CD34+ cell count≥5×106/kg were 87.5% and 0% (P =0.0156) in salvage mobilization group and initial mobilization group, respectively. For five patients who underwent high-dose CTX initial mobilization but had a total CD34+ cell count < 2×106/kg, successful collection was achieved through salvage mobilization with high-dose VP-16. Salvage mobilization with high-dose VP-16 was scheduled 2-3 weeks after failure of CTX mobilization. Adverse reactions of high-dose VP-16 mobilization did not increase compared to the initial mobilization with high-dose CTX.
CONCLUSION
As a salvage mobilization regimen, VP-16 1.2 g/m2 combined with rhG-CSF is safe and highly effective in NDMM patients who failed to initial mobilization with high-dose CTX combined with rhG-CSF.
Humans
;
Multiple Myeloma/therapy*
;
Etoposide/therapeutic use*
;
Hematopoietic Stem Cell Mobilization/methods*
;
Cyclophosphamide/therapeutic use*
;
Granulocyte Colony-Stimulating Factor
;
Salvage Therapy
;
Peripheral Blood Stem Cells
;
Male
;
Middle Aged
;
Female
;
Peripheral Blood Stem Cell Transplantation
5.Analysis of 7 cases of pediatric acute myeloid leukemia with DEK-NUP214 fusion gene.
Xiao Lan LI ; Li Peng LIU ; Yang WAN ; Fang LIU ; Xia CHEN ; Yuan Yuan REN ; Min RUAN ; Ye GUO ; Xiao Fan ZHU ; Wen Yu YANG
Chinese Journal of Pediatrics 2023;61(4):357-362
Objective: To investigate the clinical features, treatment regime, and outcome of pediatric acute myeloid leukemia (AML) with DEK-NUP214 fusion gene. Methods: The clinical data, genetic and molecular results, treatment process and survival status of 7 cases of DEK-NUP214 fusion gene positive AML children admitted to the Pediatric Blood Diseases Center of Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences from May 2015 to February 2022 were analyzed retrospectively. Results: DEK-NUP214 fusion gene positive AML accounted for 1.02% (7/683) of pediatric AML diagnosed in the same period, with 4 males and 3 females. The age of disease onset was 8.2 (7.5, 9.5) years. The blast percentage in bone marrow was 0.275 (0.225, 0.480), and 6 cases were M5 by FAB classification. Pathological hematopoiesis was observed in all cases except for one whose bone marrow morphology was unknown. Three cases carried FLT3-ITD mutations, 4 cases carried NRAS mutations, and 2 cases carried KRAS mutations. After diagnosis, 4 cases received IAE induction regimen (idarubicin, cytarabine and etoposide), 1 case received MAE induction regimen (mitoxantrone, cytarabine and etoposide), 1 case received DAH induction regimen (daunorubicin, cytarabine and homoharringtonine) and 1 case received DAE induction regimen (daunorubicin, cytarabine and etoposide). Complete remission was achieved in 3 cases after one course of induction. Four cases who did not achieved complete remission received CAG (aclarubicin, cytarabine and granulocyte colony-stimulating factor), IAH (idarubicin, cytarabine and homoharringtonine), CAG combined with cladribine, and HAG (homoharringtonine, cytarabine and granulocyte colony-stimulating factor) combined with cladribine reinduction therapy, respectively, all 4 cases reached complete remission. Six patients received hematopoietic stem cell transplantation (HSCT) after 1-2 sessions of intensive consolidation treatment, except that one case was lost to follow-up after complete remission. The time from diagnosis to HSCT was 143 (121, 174) days. Before HSCT, one case was positive for flow cytometry minimal residual disease and 3 cases were positive for DEK-NUP214 fusion gene. Three cases accepted haploid donors, 2 cases accepted unrelated cord blood donors, and 1 case accepted matched sibling donor. The follow-up time was 20.4 (12.9, 53.1) months, the overall survival and event free survival rates were all 100%. Conclusions: Pediatric AML with DEK-NUP214 fusion gene is a unique and rare subtype, often diagnosed in relatively older children. The disease is characterized with a low blast percentage in bone marrow, significant pathological hematopoiesis and a high mutation rate in FLT3-ITD and RAS genes. Low remission rate by chemotherapy only and very high recurrence rate indicate its high malignancy and poor prognosis. Early HSCT after the first complete remission can improve its prognosis.
Adolescent
;
Child
;
Female
;
Humans
;
Male
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Cladribine/therapeutic use*
;
Cytarabine/therapeutic use*
;
Daunorubicin/therapeutic use*
;
Etoposide/therapeutic use*
;
Granulocyte Colony-Stimulating Factor/therapeutic use*
;
Homoharringtonine/therapeutic use*
;
Idarubicin/therapeutic use*
;
Leukemia, Myeloid, Acute/genetics*
;
Oncogene Proteins/genetics*
;
Poly-ADP-Ribose Binding Proteins/genetics*
;
Remission Induction
;
Retrospective Studies
6.Efficiency and safety analysis of Plerixafor combined with granulocyte colony-stimulating factor on autologous hematopoietic stem cell mobilization in lymphoma.
Meng Meng JI ; Yi Ge SHEN ; Ji Chang GONG ; Wei TANG ; Xiao Qian XU ; Zhong ZHENG ; Si Yuan CHEN ; Yang HE ; Xin ZHENG ; Lin Di ZHAO ; Wei Lin ZHAO ; Wen WU
Chinese Journal of Hematology 2023;44(2):112-117
Objective: To evaluate the advantages and safety of Plerixafor in combination with granulocyte colony-stimulating factor (G-CSF) in autologous hematopoietic stem cell mobilization of lymphoma. Methods: Lymphoma patients who received autologous hematopoietic stem cell mobilization with Plerixafor in combination with G-CSF or G-CSF alone were obtained. The clinical data, the success rate of stem cell collection, hematopoietic reconstitution, and treatment-related adverse reactions between the two groups were evaluated retrospectively. Results: A total of 184 lymphoma patients were included in this analysis, including 115 cases of diffuse large B-cell lymphoma (62.5%) , 16 cases of classical Hodgkin's lymphoma (8.7%) , 11 cases of follicular non-Hodgkin's lymphoma (6.0%) , 10 cases of angioimmunoblastic T-cell lymphoma (5.4%) , 6 cases of mantle cell lymphoma (3.3%) , and 6 cases of anaplastic large cell lymphoma (3.3%) , 6 cases of NK/T-cell lymphoma (3.3%) , 4 cases of Burkitt's lymphoma (2.2%) , 8 cases of other types of B-cell lymphoma (4.3%) , and 2 cases of other types of T-cell lymphoma (1.1%) ; 31 patients had received radiotherapy (16.8%) . The patients in the two groups were recruited with Plerixafor in combination with G-CSF or G-CSF alone. The baseline clinical characteristics of the two groups were basically similar. The patients in the Plerixafor in combination with the G-CSF mobilization group were older, and the number of recurrences and third-line chemotherapy was higher. 100 patients were mobilized with G-CSF alone. The success rate of the collection was 74.0% for one day and 89.0% for two days. 84 patients in the group of Plerixafor combined with G-CSF were recruited successfully with 85.7% for one day and 97.6% for two days. The success rate of mobilization in the group of Plerixafor combined with G-CSF was substantially higher than that in the group of G-CSF alone (P=0.023) . The median number of CD34(+) cells obtained in the mobilization group of Plerixafor combined with G-CSF was 3.9×10(6)/kg. The median number of CD34(+) cells obtained in the G-CSF Mobilization group alone was 3.2×10(6)/kg. The number of CD34(+) cells collected by Plerixafor combined with G-CSF was considerably higher than that in G-CSF alone (P=0.001) . The prevalent adverse reactions in the group of Plerixafor combined with G-CSF were grade 1-2 gastrointestinal reactions (31.2%) and local skin redness (2.4%) . Conclusion: The success rate of autologous hematopoietic stem cell mobilization in lymphoma patients treated with Plerixafor combined with G-CSF is significantly high. The success rate of collection and the absolute count of CD34(+) stem cells were substantially higher than those in the group treated with G-CSF alone. Even in older patients, second-line collection, recurrence, or multiple chemotherapies, the combined mobilization method also has a high success rate of mobilization.
Humans
;
Granulocyte Colony-Stimulating Factor/therapeutic use*
;
Hematopoietic Stem Cell Mobilization/methods*
;
Hematopoietic Stem Cell Transplantation
;
Heterocyclic Compounds/adverse effects*
;
Lymphoma/drug therapy*
;
Lymphoma, T-Cell/therapy*
;
Multiple Myeloma/drug therapy*
;
Retrospective Studies
;
Transplantation, Autologous
7.Efficacy and Safety of Plerixafor Combined with G-CSF for Autologous Peripheral Blood Hematopoietic Stem Cell Mobilization in Lymphoma Patients.
Fang-Shu GUAN ; Dong-Hua HE ; Yi LI ; Yi ZHANG ; Gao-Feng ZHENG ; Yuan-Yuan ZHU ; Jing-Song HE ; En-Fan ZHANG ; Zhen CAI ; Yi ZHAO
Journal of Experimental Hematology 2023;31(4):1056-1060
OBJECTIVE:
To investigate the efficacy and safety of plerixafor combined with granulocyte colony-stimulating factor (G-CSF) in mobilizing peripheral blood hematopoietic stem cells in patients with lymphoma.
METHODS:
The clinical data of lymphoma patients who received autologous hematopoietic stem cell mobilization using plerixafor combined with G-CSF from January 2019 to December 2021 were retrospectively analyzed. The patients received 3 kinds of mobilization regimens: front-line steady-state mobilization, preemptive intervention, and recuse mobilization. The acquisition success rate, excellent rate of collection, and incidence of treatment-related adverse reaction were counted. The influence of sex, age, disease remission status, bone marrow involvement at diagnosis, chemotherapy lines, number of chemotherapy, platelet count and number of CD34+ cells on the day before acquisition in peripheral blood on the collection results were analyzed to identify the risk factors associated with poor stem cell collection.
RESULTS:
A total of 43 patients with lymphoma were enrolled, including 7 cases who received front-line steady-state mobilization, 19 cases who received preemptive intervention, and 17 cases who received recuse mobilization. The overall acquisition success rate was 58.1% (25/43) after use of plerixafor combined with G-CSF, and acquisition success rate of front-line steady-state mobilization, preemptive intervention, and recuse mobilization was 100%, 57.9%(11/19), and 41.2%(7/17), respectively. The excellent rate of collection was 18.6%(8/43). A total of 15 patients experienced mild to moderate treatment-related adverse reactions. The number of CD34+ cells < 5 cells/μl in peripheral blood on the day before collection was an independent risk factor affecting stem cell collection.
CONCLUSIONS
Plerixafor combined with G-CSF is a safe and effective mobilization regimen for patients with lymphoma. The number of CD34+ cells in peripheral blood on the day before collection is an predictable index for the evaluation of stem cell collection.
Humans
;
Antigens, CD34/metabolism*
;
Granulocyte Colony-Stimulating Factor/therapeutic use*
;
Hematopoietic Stem Cell Mobilization/methods*
;
Hematopoietic Stem Cell Transplantation
;
Heterocyclic Compounds/therapeutic use*
;
Lymphoma/drug therapy*
;
Multiple Myeloma/drug therapy*
;
Retrospective Studies
;
Transplantation, Autologous
8.Comparison of Plerixafor or Cyclophosphamide Combined with G-CSF in Mobilization of Peripheral Blood Stem Cells in Multiple Myeloma.
Wan-Ting LI ; Liang-Ming MA ; Yu LIAN ; Quan-Gang WANG ; Zhong-Jie GAO ; Shuang ZHAO
Journal of Experimental Hematology 2023;31(5):1403-1409
OBJECTIVE:
To compare the efficacy of plerixafor (PXF) combined with granulocyte colony-stimulating factor (G-CSF) (PXF+G-CSF) and cyclophosphamide (Cy) combined with G-CSF (Cy+G-CSF) in the mobilization of peripheral blood stem cells (PBSCs) in patients with multiple myeloma (MM).
METHODS:
The clinical data of 41 MM patients who underwent PBSC mobilization using PXF+G-CSF (18 cases) or Cy+G-CSF (23 cases) in Shanxi Bethune Hospital from January 2019 to December 2021 were retrospectively analyzed, including the count of collected CD34+ cells, acquisition success rate, failure rate, and optimal rate. The correlation of sex, age, disease type, DS staging, ISS staging, number of chemotherapy cycle, disease status before mobilization, and mobilization regimen with the collection results was analyzed, and the adverse reactions, length of hospital stay, and hospitalization costs were compared between the two mobilization regimens.
RESULTS:
The 41 patients underwent 97 mobilization collections, and the median number of CD34+ cells collected was 6.09 (0-34.07)×106/kg. The acquisition success rate, optimal rate, and failure rate was 90.2%, 56.1%, and 9.8%, respectively. Univariate analysis showed that sex, age, disease type, and disease stage had no significant correlation with the number of CD34+ cells collected and acquisition success rate (P >0.05), but the patients with better disease remission than partial remission before mobilization were more likely to obtain higher CD34+ cell count (P <0.05). The PXF+G-CSF group had a larger number of CD34+ cells and higher acquisition success rate in the first collection than Cy+G-CSF group (both P <0.05), and had lower infection risk and shorter length of hospital stay during mobilization (both P <0.05), but the economic burden increased (P <0.05).
CONCLUSION
PXF+G-CSF used for PBSC mobilization in MM patients has high first acquisition success rate, large number of CD34+ cells, less number of collection times, and short length of hospital stay, but the economic cost is heavy.
Humans
;
Antigens, CD34/metabolism*
;
Cyclophosphamide/therapeutic use*
;
Granulocyte Colony-Stimulating Factor/therapeutic use*
;
Hematopoietic Stem Cell Mobilization/methods*
;
Hematopoietic Stem Cell Transplantation
;
Heterocyclic Compounds/therapeutic use*
;
Multiple Myeloma/drug therapy*
;
Peripheral Blood Stem Cells/metabolism*
;
Retrospective Studies
9.Efficacy and Safety of Etoposide Combined with Cyclophosphamide for Autologous Peripheral Blood Stem Cell Mobilization in Patients with Multiple Myeloma.
Song-Tao TU ; Yu-Lan ZHOU ; Fei LI
Journal of Experimental Hematology 2023;31(5):1410-1414
OBJECTIVE:
To evaluate the efficacy and safety of etoposide combined with cyclophosphamide (EC) regimen for mobilization of autologous peripheral blood stem cells (APBSCs) in patients with multiple myeloma (MM).
METHODS:
The clinical data of 48 MM patients who received APBSC transplantation (APBSCT) in Department of Hematology of the First Affiliated Hospital of Nanchang University from January 2015 to October 2021 were retrospectively analyzed. The mobilization success rate and mobilization optimal rate of EC regimen were counted, and its effect on transplant efficacy, adverse reactions, hematopoietic reconstitution after transplantation, and survival time of MM patients were analyzed.
RESULTS:
APBSCs were collected on day 14 (10-19) after EC administration. The median of collected CD34+ cells was 6.82 (1.27-22.57)×106/kg, and the median number of apheresis session was 2 (1-4). The mobilization success rate (collecting CD34+ cells≥2×106 cells/kg after completion of apheresis) was 98% (47/48), and mobilization optimal rate (collecting CD34+ cells≥5×106 cells/kg after completion of apheresis) was 71% (34/48). The depth of remission were improved after APBSCT, and the complete remission (CR) rate increased from 45.8% before transplantation to 87.5% after transplantation (P <0.01). There was no transplant-related death, no blood transfusion during mobilization, and no mucositis occurred in the patients. The most common complication was neutropenia, with an incidence of 75.0% (36/48). After transplantation, all the patients successfully achieved hematopoietic reconstitution. The median time to neutrophil engraftment was 10 (9-26) days, and median time to platelet engraftment was 10 (8-33) days. By the end of follow-up, both the median progression-free survival (PFS) and overall survival (OS) time were not reached. The 5-year estimated PFS rate and OS rate was 53.8% and 82.4%, respectively.
CONCLUSION
The EC regimen for mobilization of APBSC has a high acquisition success rate and controllable adverse reactions, which can be an effective and safe mobilization regimen in MM patients.
Humans
;
Multiple Myeloma/therapy*
;
Etoposide/therapeutic use*
;
Peripheral Blood Stem Cells
;
Hematopoietic Stem Cell Mobilization/adverse effects*
;
Retrospective Studies
;
Granulocyte Colony-Stimulating Factor
;
Cyclophosphamide/therapeutic use*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Transplantation, Autologous/adverse effects*

Result Analysis
Print
Save
E-mail