1.Identification of nontuberculous mycobacteria in patients with multidrug-resistant tuberculosis in Quezon City, Philippines, using multiplex PCR
Michelle M. Cabanatan ; Alice Alma C. Bungay ; Sharon Yvette Angelina M. Villanueva ; Marohren C. Tobias-altura ; Dario D. Defensor ; Maria Margarita M. Lota
Acta Medica Philippina 2025;59(4):103-112
BACKGROUND AND OBJECTIVE
Nontuberculous mycobacteria (NTM) lung disease appears like tuberculosis infection but is resistant to primary anti-tuberculosis drugs. Hence, patients whose sputum sample tests positive for acid-fast bacilli (AFB) and bacterial culture for several times should be assessed for colonization or infection with NTM in a damaged lung secondary to TB. In such cases, though drug-resistant TB may be adequately treated, treatment may need to be directed towards the NTM as well. In NTM therapy, the duration and choice of treatment agent is based upon the specific organism and disease extent. This study used one-step multiplex PCR (mPCR) assay for rapid differentiation of solid cultures in Ogawa medium as Mycobacterium tuberculosis (MTB) and/or NTM.
METHODSA total of 80 stocked isolates obtained from the Lung Center of the Philippines from January to December 2018 were screened for NTM in terms of growth in Ogawa medium, acid fastness, and MPT64 TB antigen test result. These were from sputum specimens of multidrug-resistant tuberculosis (MDR-TB) patients. DNA was extracted from cultures (n=55) grown in Ogawa medium and one-step mPCR was performed to identify NTM to the species level.
RESULTSOut of 80 samples screened, a total of 55 isolates were identified as NTM. One-step mPCR identified 12.73% (7/55) as M. abscessus, 34.55% (19/55) as M. massiliense, 1.82% (1/55) as M. kansasii, and 50.91% (28/55) were identified only up to genus Mycobacteria spp. Neither M. avium complex nor M. intracellulare was identified among the samples tested.
CONCLUSIONOne-step mPCR was able to identify isolates as MTB or NTM coinciding with the initial screening using MPT64 TB antigen test. Multiplex PCR has given a more specific identificati on to the species level. The use of mPCR in identifying MTB and clinically significant NTM’s is suitable for the adequate treatment of mycobacterial infection.
Human ; Bacteria ; Multiplex Pcr ; Multiplex Polymerase Chain Reaction ; Mycobacteria ; Mycobacterium ; Tuberculosis, Multidrug-resistant
2.In-vitro determination of minimum inhibitory concentration (MIC) and contact time of povidone-iodine against Staphylococcus aureus and Klebsiella aerogenes using micro suspension test, colorimetric resazurin microplate assay, and Dey Engley neutralizer assay
Azita Racquel G. Lacuna ; Micaella C. Dato ; Loisse Mikaela M. Loterio ; Geraldine B. Dayrit ; Sharon Yvette Angelina M. Villanueva ; Maria Margarita M. Lota
Acta Medica Philippina 2025;59(4):113-124
BACKGROUND AND OBJECTIVE
The human nasal passages host major human pathogens. Recent research suggests that the microbial communities inhabiting the epithelial surfaces of the nasal passages play a key factor in maintaining a healthy microenvironment by affecting both resistance to pathogens and immunological responses. Colonization of the nasal cavity by different pathogens such as Staphylococcus aureus and Klebsiella aerogenes, is associated with a higher postoperative infection morbidity. Povidone-iodine (PVP-I) as an antiseptic has been proven to display high antibacterial, antiviral, and antifungal properties even at low concentrations, and was shown to be effective in the control of infections to limit their impact and spread. It can be used as a topical antiseptic for skin decontamination and wound management, as a nasal spray, or as a gargle. There are different methods in testing the efficacy of potential antimicrobial suspensions. This study aimed to determine the concentration of PVP-I that is most effective in nasal decolonization using microsuspension test and colorimetric minimum inhibitory concentration (MIC) determination assays, resazurin microtiter assay (REMA), and Dey-Engley (D/E) neutralizer assay. The findings of this study will contribute to knowledge regarding the intended use of PVP-I in microbial control, particularly in bacterial infections.
METHODSSeveral dilutions (2.0%, 1.0%, 0.5%, 0.25%, 0.1% and 0.09%) of commercially bought 10% (10 mg per 100 ml) povidone-iodine were prepared and tested against a standardized inoculum (1x105) of Staphylococcus aureus and Klebsiella aerogenes at different contacttimes (5 seconds, 10 seconds, 30 seconds, 1 minute, and 5 minutes). Microdilution suspension test was performed to determine the log reduction per variable, while REMA and D/E neutralizer assay were used to determine the MIC. A value of greater than or equal to 5 log reduction was considered effective for microdilution suspension test. Estimates of agreement statistics were used to interpret the results of the assay in which the overall percent agreement (OPA), positive percent agreement (PPA), negative percent agreement (NPA), and Cohen’s kappa statistics were calculated.
RESULTSPovidone-iodine concentration of 0.25% exhibited ?5 log reduction against K. aerogenes at the minimum contact time of 5 seconds. On the other hand, a slightly higher PVP-I concentration was required to achieve ?5 log reduction for S. aureus at 0.5% concentration and a minimum contact time of 1 minute. There was an observed concordance of the results of REMA and D/E neutralizer as MIC colorimetric indicators, which yielded an overall test percent agreement of 90.30% (95% CI: 84.73–94.36), and a strong level of agreement (? = 0.8, pCONCLUSION
Low povidone-iodine concentrations (i.e., 0.5% against S. aureus and 0.25% against K. aerogenes) were observed to have bactericidal activity of at least 5 log reduction as rapid as the minimum contact time of 5 seconds. Furthermore, D/E and REMA, as colorimetric indicators, had comparable performance (OPA = 90.30%; ? = 0.8, p
Human
;
Bacteria
;
Povidone-iodine
;
Microbial Sensitivity Tests
;
Anti-infective Agents, Local
;
Enterobacter Aerogenes
;
Staphylococcus Aureus
3.Optimization of resazurin microplate assay (REMA) in evaluating anti-MRSA and anti-MSSA activities
Cayel Jurist C. Garong ; Normela Patricia F. Burisay ; Renelyn S. Gaplutos ; John Lloyd B. Mandawe ; Rae Martin V. Pedrosa ; Geraldine B. Dayrit
Acta Medica Philippina 2025;59(7):55-61
BACKGROUND AND OBJECTIVE
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of hospital and community-acquired infections, showing antimicrobial resistance (AMR), which is an increasing public health concern. One of the commonly-used methods to evaluate resistance include the Kirby-Bauer disk diffusion method. However, this test is found to be time-consuming, lacking in terms of mechanization and automation, alongside its non-applicability to certain antibiotics such as vancomycin. Thus, the Clinical Laboratory Standards Institute (CLSI) recommends using the broth microdilution method in the evaluation of antibacterial activities against S. aureus. A rapid laboratory identification of MRSA is important in the treatment of patients. Therefore, this study aims to optimize and evaluate the effectiveness of a rapid microplate assay using resazurin dye as a colorimetric indicator in determining antibacterial activity against clinical isolates of MRSA and methicillin-susceptible S. aureus (MSSA).
METHODSClinical isolates of MRSA and MSSA were obtained from the Philippine General Hospital (PGH) Microbiology Section, and American Type Culture Collection (ATCC) controls of both strains (ATCC 25923 and ATCC 43300) were acquired. These were then subjected to identification and confirmation procedures. A standardization of bacterial inoculum was performed by comparing its 24-hr growth in Mueller Hinton Broth to 0.5 McFarland Standard. The resazurin microplate assay (REMA) was set-up using two-fold serial dilution of control antibiotics such as oxacillin, vancomycin, and cefoxitin. Each plate was inoculated with standardized bacterial growth of controls and clinical isolates. To determine the time needed for the reduction of the resazurin dye, a qualitative assessment was conducted by comparing the reaction time between a 6.75 mg/mL dye with a 0.01 mg/mL dye. The plates were also subjected to different incubation times and dye concentrations, and the optical densities of the plates were compared using a microplate reader.
RESULTSResults showed that there were no significant differences between the optical densities of the wells of those incubated for 5 hours and for 24 hours (p >0.05). Furthermore, there was a significant reduction in the reaction time of the dye (from 18 hours to 1 hour) when the dye concentration was reduced from 6.75 mg/mL to 0.01 mg/mL. The optimized REMA showed a significant difference between the minimum inhibitory concentrations (MICs) of the different antibiotics against the control and isolate strains of MRSA and MSSA, showing a W of -2.98 (pCONCLUSION
Based on the results presented, the researchers determined the optimal condition for the resazurin microtiter assay, which was 0.01 g/mL concentration of resazurin dye, at a 5-hour incubation period. This study has shown that an optimized REMA is an efficient and fast method to determine the antimicrobial activities of oxacillin, cefoxitin, and vancomycin against MRSA and MSSA.
Methicillin-resistant Staphylococcus Aureus
4.Neurolisteriosis in a 31-year-old man: A case report
Pamela Alyssa E. Olaoguera ; Maritzie R. Eribal
Philippine Journal of Internal Medicine 2025;63(3):22-27
INTRODUCTION
Neurolisteriosis is caused by Listeria monocytogenes, a gram-positive microorganism. It usually affects vulnerable population including pregnant women, neonates, immunocompromised individuals, and elderly persons. This report describes a case of neurolisteriosis in a 31-year-old immunocompetent man.
CASE SUMMARYThis case involves a 31-year-old Filipino male who presented with decrease sensorium. A lumbar puncture was performed, and polymerase chain reaction (PCR) testing of the cerebrospinal fluid confirmed the presence of Listeria monocytogenes. On the fifth day of hospitalization, the patient developed unilateral sixth cranial nerve palsy and facial nerve palsy. He was treated with intravenous ampicillin for 21 days, resulting in significant improvement in the cranial nerve deficits.
CONCLUSIONIt is the first neurolisteriosis case in this institution. There is only one published neurolisteriosis case in the Philippines which presented with brain abscess. Neurolisteriosis, although uncommon, is one of the differential diagnoses in patients presenting with fever, headache, and nuchal rigidity. Isolation of Listeria monocytogenes in the cerebrospinal fluid and blood culture is diagnostic. Neurolisteriosis is an invasive disease which can result in neurologic sequalae such as cranial nerve palsies. Targeted treatment aids in good clinical outcomes.
Human ; Bacteria ; Male ; Adult: 25-44 Yrs Old ; Listeria Monocytogenes
5.Antibacterial and biofilm-inhibiting activity of the crude Psidium guajava ethanolic leaf extracts against biofilm-forming Staphylococcus epidermidis (ATCC 12228).
Leeland Anthony L. DELA LUNA ; Ailyn M. YABES ; Cecilia Nelia C. MARAMBA-LAZARTE ; Irma R. MAKALINAO ; Lynn Crisanta R. PANGANIBAN ; Richard Henry P. TIONGCO II
Acta Medica Philippina 2025;59(17):86-97
BACKGROUND AND OBJECTIVE
The emergence of antimicrobial resistance (AMR) poses a significant global health threat, with developing countries such as the Philippines facing particularly severe impacts due to resource limitations. The most affected by AMR is Healthcare Acquired Infections (HAIs), including Catheter-Related Bloodstream Infections (CRBSIs). These are commonly associated with biofilm-forming bacteria like Staphylococcus epidermidis, which complicates treatment due to antibiotic resistance. The Philippine variety of Psidium guajava, a folklorically used medicinal plant, has shown potential antimicrobial properties that could offer a new avenue for combating resistant pathogens.
METHODSThis study evaluated the antibacterial and antibiofilm efficacy of crude Psidium guajava ethanolic leaf extracts (PGELE) against biofilm-forming S. epidermidis (ATCC 12228). PGELE was tested at five concentrations (ranging from 312.5 µg/mL to 10,000 µg/mL) using two-fold serial dilution to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) using agar dilution count method. For the Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Biofilm Eradication Concentration (MBEC), crude PGELE was tested at 0.25 x MIC, 0.5 x MIC, MIC, 2 x MIC and 4 x MIC.
RESULTSThe MIC for PGELE against S. epidermidis was determined to be 2500 µg/mL, and the MBC was 5000 µg/mL, indicating that PGELE exhibits bactericidal activity. In biofilm assays, PGELE demonstrated strong antibiofilm activity at concentrations as low as 625 µg/ mL, inhibiting biofilm formation by more than 50%. However, PGELE did not eradicate preformed biofilms, as indicated by the MBEC results at concentrations ranging from 625 µg/mL to 10,000 µg/mL.
CONCLUSIONPsidium guajava ethanolic leaf extracts exhibit antibacterial and antibiofilm activities against S. epidermidis, particularly in preventing biofilm formation. These findings suggest that PGELE could be developed as an effective natural antimicrobial agent for use in healthcare settings to prevent CRBSIs and other infections caused by biofilm-forming pathogens. Further research and development are warranted to explore the potential of PGELE for antimicrobial drug development.
Plants ; Bacteria ; Staphylococcus Epidermidis ; Catheter-related Infections ; Psidium Guajava ; Psidium
6.Role of antibiotic delivery system targeting bacterial biofilm based on ε-poly- L-lysine and cyclodextrin in treatment of bone and joint infections.
Tiexin LIU ; Junqing LIN ; Xianyou ZHENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):362-369
OBJECTIVE:
To explore the mechanism of antibiotic delivery system targeting bacterial biofilm with linezolid (LZD) based on ε-poly- L-lysine (ε-PLL) and cyclodextrin (CD) (ε-PLL-CD-LZD), aiming to enhance antibiotic bioavailability, effectively penetrate and disrupt biofilm structures, and thereby improve the treatment of bone and joint infections.
METHODS:
ε-PLL-CD-LZD was synthesized via chemical methods. The grafting rate of CD was characterized using nuclear magnetic resonance. In vitro biocompatibility was evaluated through live/dead cell staining after co-culturing with mouse embryonic osteoblast precursor cells (MC3T3-E1), human umbilical vein endothelial cells, and mouse embryonic fibroblast cells (3T3-L1). The biofilm-enrichment capacity of ε-PLL-CD-LZD was assessed using Staphylococcus aureus biofilms through enrichment studies. Its biofilm eradication efficacy was investigated via minimum inhibitory concentration (MIC) determination, scanning electron microscopy, and live/dead bacterial staining. A bone and joint infection model in male Sprague-Dawley rats was established to validate the antibacterial effects of ε-PLL-CD-LZD.
RESULTS:
In ε-PLL-CD-LZD, the average grafting rate of CD reached 9.88%. The cell viability exceeded 90% after co-culturing with three types cells. The strong biofilm enrichment capability was observed with a MIC of 2 mg/L. Scanning electron microscopy observations revealed the effective disruption of biofilm structure, indicating potent biofilm eradication capacity. In vivo rat experiments demonstrated that ε-PLL-CD-LZD significantly reduced bacterial load and infection positivity rate at the lesion site ( P<0.05).
CONCLUSION
The ε-PLL-CD antibiotic delivery system provides a treatment strategy for bone and joint infections with high clinical translational significance. By effectively enhancing antibiotic bioavailability, penetrating, and disrupting biofilms, it demonstrated significant anti-infection effects in animal models.
Biofilms/drug effects*
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Polylysine/chemistry*
;
Cyclodextrins/administration & dosage*
;
Humans
;
Linezolid/pharmacology*
;
Staphylococcus aureus/physiology*
;
Rats, Sprague-Dawley
;
Mice
;
Rats
;
Male
;
Drug Delivery Systems
;
Staphylococcal Infections/drug therapy*
;
Microbial Sensitivity Tests
;
Human Umbilical Vein Endothelial Cells
;
Osteoblasts/cytology*
7.Characteristics of immune response induced by mucosal immunization with recombinant adenovirus of Mycobacterium tuberculosis phosphodiesterase.
Ting DAI ; Yanzhi LU ; Ruihua ZHAO ; Huanhuan NING ; Jian KANG ; Leran HAO ; Jialing LI ; Yuxiao CHANG ; Yinlan BAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):1-8
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF). Real-time quantitative PCR was performed to assess the transcription levels of cytokines interferon γ(IFN-γ) and interleukin 10(IL-10) in mouse lungs. Flow cytometry was used to determine the proportions of CD4+ and CD8+ T cell subsets in the lungs and spleens. ELISA was employed to measure the levels of cytokines IFN-γ, IL-2, IL-10, inflammatory factors IL-6, and tumor necrosis factor α (TNF-α) secreted by spleen cells following antigen stimulation. The bacteria loads in the lungs and spleens of Mtb-infected mice were enumerated by plate counting methods. Resluts Intranasal immunization with rAd-CnpB induced high titers of IgG in mouse serum and the production of IgG and IgA in BALF, along with alterations in T lymphocyte subsets in the lungs and spleens. Administration of rAd-CnpB, either alone or in combination with drugs, to Mtb-infected mice significantly increased serum IgG levels as well as IgA and IgG levels in BALF. rAd-CnpB immunization promoted the secretion of CnpB-specific cytokines and inflammatory factors by splenocytes in Mtb-infected mice. However, rAd-CnpB immunotherapy, either alone or combined with drugs, did not significantly affect the bacterial loads in the lungs and spleens of mice with Mtb respiratory infections. Conclusion Mucosal immunization with rAd-CnpB induced significant mucosal, humoral and cellular immune responses in mice, and significantly enhanced CnpB-specific cellular immune responses in Mtb-infected mice.
Animals
;
Adenoviridae/immunology*
;
Mycobacterium tuberculosis/genetics*
;
Mice
;
Female
;
Phosphoric Diester Hydrolases/genetics*
;
Tuberculosis Vaccines/administration & dosage*
;
Tuberculosis/prevention & control*
;
Mice, Inbred BALB C
;
Cytokines
;
Lung/microbiology*
;
Immunization
;
Bronchoalveolar Lavage Fluid/immunology*
;
Immunity, Mucosal
8.miR-207 targets autophagy-associated protein LAMP2 to regulate the mechanism of macrophage-mycobacterium tuberculosis interaction.
Wenya DU ; Yumei DAI ; Linzhi YUE ; Tao MA ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):97-104
Objectives miR-207 has been identified as being expressed in natural killer (NK) cell exosomes that play a role in disease progression; however, to date, there are no studies specifically linking miR-207 to tuberculosis (TB). Methods Bioinformatics methods employed for prediction, followed by a dual luciferase reporter assay to determine whether lysosome-associated membrane protein 2 (LAMP2) is targeted by miR-207. The experiments were divided into four groups using the liposome transfection method (OP-LAMP2 group: co-transfected with miR-207 mimics and LAMP2 overexpression plasmid; EP group: co-transfected with mimics NC and null-loaded plasmid; siLAMP2 group: transfected with siLAMP2; and siLAMP2-NC group: transfected with siLAMP2-NC). TB infection was modeled using H37Ra-infected Ana-1 cells. The impact of LAMP2 on intracellular mycobacterial load and clearance of extracellular residual mycobacteria were assessed by tuberculosis colony-forming unit counting. Flow cytometry was used to assess the total apoptosis rate. Real-time fluorescent quantitative PCR was conducted to determine the relative expression of LAMP2, apoptosis genes, pyroptosis genes, and autophagy genes. Western blot analysis was performed to measure the relative expression of LAMP2 proteins, apoptosis proteins, pyroptosis proteins, and autophagy proteins. Results Dual luciferase reporter assay test showed that there was a targeting relationship between LAMP2 and miR-207. The transfection model was successfully constructed under real-time fluorescent quantitative PCR and Western blot statistical analysis, and microscopic observation. The infection model was successfully established under microscopic observation. Colony forming unit counting revealed that the number of colonies in the OP-LAMP2 group was lower than that in the EP group, while the number of colonies in the siLAMP2 group was higher than that in the siLAMP2-NC group. Flow cytometry assay revealed that the total apoptosis in OP-LAMP2 group was lower than that in EP group, and the total apoptosis in siLAMP2 group was higher than that in siLAMP2-NC group. Real-time fluorescence quantitative PCR and Western blot analysis revealed that the relative expression of apoptosis and pyroptosis-related proteins and genes in the control group was lower in the OP-LAMP2 group compared to the EP group, and higher in the siLAMP2 group compared to the siLAMP2-NC group. Real-time fluorescence quantitative PCR detected that the relative expression of autophagy positively regulated genes Microtubule-associated protein 1 light chain 3(LC3)and Beclin1 in the OP-LAMP2 group was higher in the OP-LAMP2 group compared to the EP group, and lower in the siLAMP2 group compared to the siLAMP2-NC group, while the relative expression of negatively regulated autophagy genes followed the opposite trend to that of autophagy positively regulated genes. The relative expression of autophagy-related proteins was consistent with the trend of autophagy genes. Conclusions miR-207 enhances macrophage apoptosis, cellular pyroptosis and inhibits autophagy, promoting survival of Mycobacterium tuberculosis by targeting the autophagy-related protein LAMP2, thus offering a novel therapeutic direction for tuberculosis.
Lysosomal-Associated Membrane Protein 2/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Autophagy/genetics*
;
Humans
;
Macrophages/metabolism*
;
Apoptosis/genetics*
;
Tuberculosis/metabolism*
;
Cell Line
;
Pyroptosis/genetics*
9.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
10.Mycobacterium tuberculosis PPE59 promotes its survival in host cells by regulating cytokine secretion of Mycobacterium smegmatis infected macrophages.
Chutong WANG ; Fangzheng GUO ; Yamin SONG ; Jing WEI ; Minying LI ; Hongtao WANG ; Tao XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):875-881
Objective To study the effect of Mycobacterium tuberculosis (Mtb) Pro-Pro-Glu-59 (PPE59) protein on the biological function of Mycobacterium smegmatis (Ms) and the regulation of host cell immune response. Methods PPE59 gene fragment was obtained by PCR amplification, cloned into pALACE, constructed into recombinant pALACE-PPE59 vector, and electro-transformed into Ms. Western blot was applied to analyse PPE59 expression and subcellular localization. The survival of Ms_Vec and Ms_PPE59 under low acid (pH=3 and pH=5) conditions and active surface pressure sodium dodecyl sulfate (SDS) conditions and their intracellular survival in macrophages were analyzed. ELISA was used to detect the cytokine (IL-1β, IL-6, IL-12, TNF-α and IL-10) expression levels of Ms_Vec and Ms_PPE59 infected macrophages. Results PPE59 protein localized to the cell wall of Ms can enhance the acid-resistance and anti-SDS effect of Ms, which is conducive to the survival of Ms in macrophages. PPE59 significantly decreased the secretion levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-12 and TNF-α), and promoted the secretion levels of anti-inflammatory cytokine (IL-10). Conclusion PPE59 enhances the survival ability of Ms under low acid and SDS pressure and promotes its intracellular survival by regulating the cytokine secretion levels.
Mycobacterium smegmatis/metabolism*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Bacterial Proteins/metabolism*
;
Animals
;
Mice
;
Antigens, Bacterial/metabolism*


Result Analysis
Print
Save
E-mail