1.Research advances in the role of O-GlcNAc glycosylation in ischemic stroke
Journal of Apoplexy and Nervous Diseases 2025;42(3):262-266
O-GlcNAc glycosylation, as the most extensive type of glycosylation modification, is involved in the development and prognosis of ischemic stroke by regulating excitatory toxicity, mitochondrial function, synaptic plasticity, and immune metabolism and inhibiting endoplasmic reticulum stress and inflammatory response, and regulation of O-GlcNAc glycosylation is considered a promising therapeutic target for ischemic stroke.This article reviews the characteristics and specific mechanisms of O-GlcNAc glycosylation in ischemic stroke,in order to provide new ideas for the prevention and treatment of ischemic stroke.
Glycosylation
2.Functional characterization of flavonoid glycosyltransferase AmGT90 in Astragalus membranaceus.
Guo-Qing PENG ; Bing-Yan XU ; Jian-Ping HUANG ; Zhi-Yin YU ; Sheng-Xiong HUANG
China Journal of Chinese Materia Medica 2025;50(6):1534-1543
Astragalus membranaceus(A. membranaceus), a traditional tonic, contains flavonoids as one of its main bioactive components and key indicators for quality standard detection. These compounds predominantly exist in glycosylated forms after glycosylation modification within the plant. The catalytic products of flavonoid glycosyltransferases in A. membranaceus have been reported to be mostly monoglycosides, and only AmUGT28 catalyzes luteolin to form diglycosides. In this study, we cloned a glycosyltransferase gene, AmGT90, from A. membranaceus, with an ORF length of 1 335 bp, encoding 444 amino acids, and the protein had a relative molecular mass of 50.5 kDa. Phylogenetic tree analysis indicated that AmGT90 belongs to the UGT74 family. In vitro enzymatic reaction showed that AmGT90 had broad substrate specificity and could catalyze the glycosylation of various flavonoids, including isoflavones, flavones, flavanones, and chalcones. AmGT90 not only catalyzed the formation of monoglycosides but also diglycosides. In addition, the mechanism of AmGT90 catalyzing the formation of diglycosides from luteolin was preliminarily explored. The experimental results showed that AmGT90 may preferentially recognize C4'-OH of luteolin and then recognize C7-OH to form diglycosides. This study reported a glycosyltransferase from A. membranaceus capable of converting flavonoids into monoglycosides and diglycosides. This finding not only enhances our understanding of the biosynthetic pathways of flavonoid glycosides in A. membranaceus but also introduces a new component for glycoside production through synthetic biology.
Glycosyltransferases/chemistry*
;
Flavonoids/chemistry*
;
Astragalus propinquus/classification*
;
Phylogeny
;
Glycosylation
;
Plant Proteins/chemistry*
;
Substrate Specificity
;
Cloning, Molecular
;
Amino Acid Sequence
3.Prokaryotic expression of human Alg1 protein and analysis of the transmembrane domain properties.
Dongzhi WEI ; Zhenghui CHEN ; Chundi WANG ; Xiaodong GAO ; Ning WANG
Chinese Journal of Biotechnology 2025;41(4):1535-1546
As the most common type of protein glycosylation, N-glycosylation begins with the synthesis of the dolichol-linked oligosaccharide (DLO) precursor in the endoplasmic reticulum. The mannosyltransferase Alg1 catalyzes the addition of the first mannose molecule to DLO, serving as a key enzyme in this biochemical pathway. The defect of human ALG1 gene can lead to the congenital disorders of glycosylation (CDG), i.e., ALG1-CDG. Therefore, it is of great significance to establish the expression and activity assay system of Homo sapiens Alg1 (HsAlg1) in vitro. In this study, full-length plasmid pET28a-His6-HsAlg1 and transmembrane domain-lacking plasmid pET28a-His6-HsAlg123-464 were constructed and expressed in Escherichia coli, and the activity of recombinant HsAlg1 and HsAlg123-464 was measured by liquid chromatography tandem mass spectrometry (LC-MS) with dolichyl-pyrophosphate GlcNAc2 (DPGn2) as the substrate. The results showed that HsAlg1 had transglycosylation activity, while the activity decreased after protein purification, which was partially restored upon re-addition of membrane components. However, HsAlg123-464 was unable to catalyze glycosylation. The results indicate that the N-terminal transmembrane domain (TMD) of HsAlg1 plays an important role in the catalytic reaction. This study lays a foundation for further expression and activity analysis of ALG1-CDG-related mutants.
Humans
;
Escherichia coli/metabolism*
;
Mannosyltransferases/biosynthesis*
;
Glycosylation
;
Recombinant Proteins/metabolism*
;
Protein Domains
4.Engineering of Pichia pastoris for producing glycoproteins with hybrid-type (GlcNAcMan5GlcNAc2) N-glycans.
Hao WANG ; Tiantian WANG ; Bin ZHANG ; Jun WU ; Huifang XU ; Yanru ZHANG ; Kehai LIU ; Bo LIU
Chinese Journal of Biotechnology 2025;41(9):3617-3629
Glycosylation modification is an important post-translational modification of proteins, which participates in regulating protein half-life, biological activity, and immunogenicity, thereby affecting their functions. Glycoproteins expressed in Pichia pastoris predominantly carry high-mannose type glycans, primarily composed of mannose residues, which starkly contrasts with the complex-type glycans synthesized by mammalian cells. This study aims to transform the high mannose glycosylation modification of P. pastoris into a hybrid glycosylation modification similar to that of mammalian cells through genetic engineering technology. We introduced the mannosidase Ⅰ gene (MDSⅠ) from Trichoderma viride and the human β-1,2-N-acetylglucosaminyltransferase I gene (GnTⅠ) into a previously constructed P. pastoris strain (∆och1) capable of producing Man8GlcNAc2 glycans. To precisely regulate the expression of MDSⅠ and GnTⅠ, we designed various promoter combinations, including the strong inducible AOX promoter and the constitutive GAP promoter. The receptor-binding domain (RBD, residues 377-588) of the spike protein from the Middle East respiratory syndrome coronavirus (MERS-CoV) was selected as the reporter protein for this investigation (MERS-RBD). The N-glycosylation profile of MERS-RBD was systematically analyzed using PNGase F digestion coupled with mass spectrometry. The results showed that after the knockout of och1 and the introduction of MDSⅠ and GnTⅠ genes with different promoter combinations, P. pastoris strains capable of producing GlcNAcMan5GlcNAc2 glycans were successfully generated. When the AOX promoter was used to control the MDSⅠ gene and the GAP promoter was used to control the GnTⅠ gene, the engineered strain exhibited the highest proportion of hybrid-type GlcNAcMan5GlcNAc2 glycans, which accounted for 68.38% of the total N-glycosylation. In conclusion, we successfully engineered a P. pastoris strain capable of synthesizing hybrid-type GlcNAcMan5GlcNAc2 glycans, establishing a foundation for subsequent research on the biosynthesis of complex-type N-glycans in P. pastoris.
Glycosylation
;
Glycoproteins/genetics*
;
Polysaccharides/metabolism*
;
N-Acetylglucosaminyltransferases/metabolism*
;
Pichia/metabolism*
;
Humans
;
Mannosidases/metabolism*
;
Genetic Engineering
;
Trichoderma/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales
5.A case of Congenital disorder of glycosylation due to SSR4 gene deletion.
Lingwei WENG ; Qingqing DENG ; Xiuli CHEN ; Kai WANG ; Jie SHAO
Chinese Journal of Medical Genetics 2023;40(3):364-367
OBJECTIVE:
To explore the clinical and molecular characteristics of a child with Congenital disorders of glycosylation (CDG).
METHODS:
A 4-month-old boy who had presented at the Children's Hospital Affiliated to Zhejiang University Medical School on December 31, 2019 due to feeding difficulties after birth was selected as the study subject. High-throughput sequencing was carried out for the patient, and real-time qPCR was used for validating the suspected deletion fragments and the carrier status of other members of his family.
RESULTS:
High-throughput sequencing revealed that the child had lost the capture signal for chrX: 153 045 645-153 095 809 (approximately 50 kb), which has involved 4 OMIM genes including SRPK3, IDH3G, SSR4 and PDZD4. qPCR verified that the copy number in this region was zero, while that of his elder brother and parents was all normal.
CONCLUSION
The deletion of the fragment containing the SSR4 gene in the Xq28 region probably underlay the SSR4-CDG in this child.
Aged
;
Child
;
Humans
;
Infant
;
Male
;
Gene Deletion
;
Glycosylation
;
High-Throughput Nucleotide Sequencing
;
Neoplasm Proteins
;
Parents
;
Siblings
6.Advances in the diagnosis and treatment of phosphomannomutase 2 deficiency.
Chinese Journal of Contemporary Pediatrics 2023;25(2):223-228
Phosphomannomutase 2 deficiency is the most common form of N-glycosylation disorders and is also known as phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG). It is an autosomal recessive disease with multi-system involvements and is caused by mutations in the PMM2 gene (OMIM: 601785), with varying severities in individuals. At present, there is still no specific therapy for PMM2-CDG, and early identification, early diagnosis, and early treatment can effectively prolong the life span of pediatric patients. This article reviews the advances in the diagnosis and treatment of PMM2-CDG.
Humans
;
Child
;
Congenital Disorders of Glycosylation/therapy*
;
Mutation
7.A Nested Case-Control Study to Explore the Association between Immunoglobulin G N-glycans and Ischemic Stroke.
Bi Yan WANG ; Man Shu SONG ; Jie ZHANG ; Xiao Ni MENG ; Wei Jia XING ; You Xin WANG
Biomedical and Environmental Sciences 2023;36(5):389-396
OBJECTIVE:
This study prospectively investigates the association between immunoglobulin G (IgG) N-glycan traits and ischemic stroke (IS) risk.
METHODS:
A nested case-control study was conducted in the China suboptimal health cohort study, which recruited 4,313 individuals in 2013-2014. Cases were identified as patients diagnosed with IS, and controls were 1:1 matched by age and sex with cases. IgG N-glycans in baseline plasma samples were analyzed.
RESULTS:
A total of 99 IS cases and 99 controls were included, and 24 directly measured glycan peaks (GPs) were separated from IgG N-glycans. In directly measured GPs, GP4, GP9, GP21, GP22, GP23, and GP24 were associated with the risk of IS in men after adjusting for age, waist and hip circumference, obesity, diabetes, hypertension, and dyslipidemia. Derived glycan traits representing decreased galactosylation and sialylation were associated with IS in men (FBG2S2/(FBG2 + FBG2S1 + FBG2S2): odds ratio ( OR) = 0.92, 95% confidence interval ( CI): 0.87-0.97; G1 n: OR = 0.74, 95% CI: 0.63-0.87; G0 n: OR = 1.12, 95% CI: 1.03-1.22). However, these associations were not found among women.
CONCLUSION
This study validated that altered IgG N-glycan traits were associated with incident IS in men, suggesting that sex discrepancies might exist in these associations.
Male
;
Humans
;
Female
;
Immunoglobulin G/metabolism*
;
Ischemic Stroke
;
Case-Control Studies
;
Cohort Studies
;
Glycosylation
;
Polysaccharides
8.Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation.
Nian HUANG ; Hai-Wei HE ; Yu-Yu HE ; Wei GU ; Ming-Juan XU ; Long LIU
Journal of Integrative Medicine 2023;21(6):561-574
OBJECTIVE:
Xiaotan Sanjie recipe (XTSJ), a Chinese herbal compound medicine, exerts a significant inhibitory effect on gastric cancer (GC) metastasis. This work investigated the mechanism underlying the XTSJ-mediated inhibition of GC metastasis.
METHODS:
The effect of XTSJ on GC metastasis and the associated mechanism were investigated in vitro, using GC cell lines, and in vivo, using a GC mouse model, by focusing on the expression of Glc-N-Ac-transferase V (GnT-V; encoded by MGAT5).
RESULTS:
The migration and invasion ability of GC cells decreased significantly after XTSJ administration, which confirmed the efficacy of XTSJ in treating GC in vitro. XTSJ increased the accumulation of E-cadherin at junctions between GC cells, which was reversed by MGAT5 overexpression. XTSJ administration and MGAT5 knockdown alleviated the structural abnormality of the cell-cell junctions, while MGAT5 overexpression had the opposite effect. MGAT5 knockdown and XTSJ treatment also significantly increased the accumulation of proteins associated with the E-cadherin-mediated adherens junction complex. Furthermore, the expression of MGAT5 was significantly lower in the lungs of BGC-823-MGAT5 + XTSJ mice than in those of BGC-823-MGAT5 + solvent mice, indicating that the ability of gastric tumors to metastasize to the lung was decreased in vivo following XTSJ treatment.
CONCLUSION
XTSJ prevented GC metastasis by inhibiting the GnT-V-mediated E-cadherin glycosylation and promoting the E-cadherin accumulation at cell-cell junctions. Please cite this article as: Huang N, He HW, He YY, Gu W, Xu MJ, Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. J Integr Med. 2023; 21(6): 561-574.
Male
;
Mice
;
Animals
;
Stomach Neoplasms/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Glycosylation
;
Cell Line, Tumor
;
Cadherins/metabolism*
9.Chemical approaches for the stereocontrolled synthesis of 1,2-cis-β-D-rhamnosides.
Juntao CAI ; Xin YUAN ; Yuanfang KONG ; Yulong HU ; Jieming LI ; Shiqing JIANG ; Chunhong DONG ; Kan DING
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):886-901
In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-β-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain β-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of β-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in β-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.
Glycosides
;
Mannosides
;
Glycosylation
;
Stereoisomerism
10.Application of StrucGP in medical immunology: site-specific N-glycoproteomic analysis of macrophages.
Pengfei LI ; Zexuan CHEN ; Shanshan YOU ; Yintai XU ; Zhifang HAO ; Didi LIU ; Jiechen SHEN ; Bojing ZHU ; Wei DAN ; Shisheng SUN
Frontiers of Medicine 2023;17(2):304-316
The structure of N-glycans on specific proteins can regulate innate and adaptive immunity via sensing environmental signals. Meanwhile, the structural diversity of N-glycans poses analytical challenges that limit the exploration of specific glycosylation functions. In this work, we used THP-1-derived macrophages as examples to show the vast potential of a N-glycan structural interpretation tool StrucGP in N-glycoproteomic analysis. The intact glycopeptides of macrophages were enriched and analyzed using mass spectrometry (MS)-based glycoproteomic approaches, followed by the large-scale mapping of site-specific glycan structures via StrucGP. Results revealed that bisected GlcNAc, core fucosylated, and sialylated glycans (e.g., HexNAc4Hex5Fuc1Neu5Ac1, N4H5F1S1) were increased in M1 and M2 macrophages, especially in the latter. The findings indicated that these structures may be closely related to macrophage polarization. In addition, a high level of glycosylated PD-L1 was observed in M1 macrophages, and the LacNAc moiety was detected at Asn-192 and Asn-200 of PD-L1, and Asn-200 contained Lewis epitopes. The precision structural interpretation of site-specific glycans and subsequent intervention of target glycoproteins and related glycosyltransferases are of great value for the development of new diagnostic and therapeutic approaches for different diseases.
Humans
;
B7-H1 Antigen
;
Glycosylation
;
Polysaccharides/metabolism*

Result Analysis
Print
Save
E-mail