1.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics
2.Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.
Kyoung Yong JEONG ; Mina SON ; June Yong LEE ; Kyung Hee PARK ; Jae Hyun LEE ; Jung Won PARK
Journal of Korean Medical Science 2016;31(1):18-24
Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.
Adolescent
;
Adult
;
Allergens/*chemistry/*immunology
;
Amino Acid Sequence
;
Animals
;
Bombyx/*chemistry/genetics/growth & development/*immunology
;
Epitopes/immunology
;
Female
;
Food Hypersensitivity/etiology
;
Glycoproteins/*chemistry/genetics/*immunology
;
Hot Temperature
;
Humans
;
Immunoglobulin E/immunology
;
Male
;
Molecular Sequence Data
;
Molecular Weight
;
Proteomics
;
Pupa/chemistry/immunology
;
Recombinant Proteins/biosynthesis/chemistry/immunology
;
Sequence Alignment
3.Advances in the structure and function of pandemic A/H1N1/2009 influenza virus HA protein.
Wen-Qiang ZHANG ; Shao-Xia SONG ; Tong-Zhan WANG
Chinese Journal of Virology 2012;28(4):444-452
Since March 2009, pandemic A/H1N1/2009 influenza virus has been spreading throughout many countries including China. The emerged virus caused great harm to human health and social economy. Hemagglutinin (HA) is the most important viral surface glycoprotein, mainly possessing three kinds of functions: (1) binding to host cell receptor, (2) triggering the fusion between viral envelop and target cell membrane, (3) stimulating the body to generate the neutralizing antibody. Advances in the structure, primary function, evolution and antigenicity of pandemic A/H1N1/2009 influenza virus HA protein are reviewed in this paper.
Animals
;
Evolution, Molecular
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
genetics
;
immunology
;
pathogenicity
;
physiology
;
Influenza, Human
;
epidemiology
;
virology
;
Pandemics
4.Molecular evolution of human influenza H3N2 virus hemagglutinin genes in Guangdong China.
Ping HUANG ; Jing ZHONG ; Li-Jun LIANG ; Nian-Mei HOU ; Han-Zhong NI ; Jie WU ; Xin ZHANG
Chinese Journal of Virology 2012;28(4):330-335
The molecular characterization and phylogenetic analysis of hemagglutinin (HA) genes of human influenza H3N2 viruses in Guangdong, China from 2007 to 2010 were studied in this study. By space-time sampling of strains, the HA genes of H3N2 strains from Guangdong were sequenced and searched from Internet, and then the variation and evolution of HA genes were conducted by Lasergene 7.1 and Mega 5.05 and evolutionary rates were analyzed by epidemiological data. The phylogenetic tree was established by alignment of 17 Guangdong strains and 26 global reference strains. Ks rates and Ka rates of HA genes were 2.06 x 10(-3)-2.23 x 10(-3) Nt/Year and 1.05 x 10(-3)-1.21 x 10(3) Nt/Year during 2007-2010, while the velocity of HA1 evolution of Ka was 3. 13 times than that of HA2 evolution. Compared with HA of vaccine strain A/Perth/16/2009, the genetic homologies of Guangdong strains in 2009 reached to 98.8%-99.7% and of Guangdong strains in 2010 reached to 98.0%-98.4%. There were some amino acid substitutions in five epitope regions of HA1 during 2007-2010, especially in B region (N160K) and D region (K174R/N); the K189E/N/Q and T228A in RBS (receptor-binding site) occurred in 2010 as two glycoproteins sites substituted impacted on the HA1 antigenicity. The antigenicity of epidemic H3N2 strains in 2010 was to some degree different that of the vaccine strain A/ Perth/16/2009. According to that there were variations of B and D epitopes and two sites of RBS and two glycoprotein in Guangdong H3N2 HA1 genes, WHO/ CDC should recommend new representative strains during 2011-2012 influenza seasons if H3N2 HA genes further evolve in the near future.
Amino Acid Substitution
;
China
;
Disulfides
;
chemistry
;
Epitopes
;
genetics
;
Evolution, Molecular
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
immunology
;
Humans
;
Influenza A Virus, H3N2 Subtype
;
genetics
;
Mutation
;
Phylogeny
6.Progress about genetic and variant study of rabies virus glycoprotein gene.
Chinese Journal of Virology 2011;27(2):184-188
Animals
;
Evolution, Molecular
;
Glycoproteins
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Mutation
;
Phylogeny
;
Rabies virus
;
genetics
;
physiology
;
Viral Proteins
;
chemistry
;
genetics
;
immunology
;
metabolism
7.Sequence and phylogenetic analysis of the haemagglutinin genes of H9N2 avian influenza viruses isolated in central China during 1998-2008.
Jun ZHAO ; Li-na CHAI ; Ze-lin WANG
Chinese Journal of Virology 2011;27(2):122-128
The purpose of this study is to explore the effects of the HA sequence variation on the pathogenicity and antigenicity of avian influenza virus(AIV). Haemagglutinin (HA) genes from, 6 of 25 avian influenza viruses (AIVs) H9N2 strains with different pathogenicity isolated in central China during last 10 years were amplified by reverse transcriptase PCR (RT-PCR), completely sequenced and phylogenetically analyzed. The purpose of this study was to explore the effects of the HA sequence variation on the pathogenicity and antigenicity of AIV. The results showed that all 6 representative H9N2 isolates belong to low pathogenic AIVs, since none of the amino acid sequences at the cleavage site of the HA of the isolates possessed the basic motif required for highly pathogenic viruses (R-X-R/K-R). There were eight potential glycosylation sites in HA of the isolates, except that 3# and 12# had an extra one. The higher pathogenicity of 3# and 12# was probably due to the extra glycosylation site (145aa-147aa) in HA1, which might alter the conformational structure of HA resulting in the mutation or deletion of the binding sites of anti-HA antibody, and has effects on receptor binding sites thus changed the antigenicity of the virus. Our results suggested that attention should be paid to the transmission and natural evolution of H9N2 AIV in order to control AIV H9N2.
Animals
;
Chickens
;
China
;
Computational Biology
;
Glycosylation
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Influenza A Virus, H9N2 Subtype
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
Sequence Alignment
;
Sequence Analysis, DNA
8.Genetic characterization of HA1 gene of influenza H3N2 virus isolates during 2008-2009 in Zhuhai, China.
Hong-xia LI ; Quan-de WEI ; Li-rong ZHANG ; Jing-tao ZHANG ; Yi-xiong LIN ; Yan-mei FANG ; Yu-ke ZHENG
Chinese Journal of Virology 2011;27(2):117-121
To understand the HA1 genetic variation characterization of influenza H3N2 virus isolates in Zhu-hai during 2008-2009, we selected 20 of H3N2 Influenza strains cultured in MDCK cell. Viral RNAs were extracted and amplified by using RT-PCR. The amplified products were purified after identified by gel electrophoresis and then the nucleotide sequences of the amplicons were determined. The results were analyzed by the software ClustalX and MEGA4. 1. When compared with the amino acid sequences of the epitopes of HA1 district of H3N2 influenza vaccine recommended by WHO in 2008, changes were found in those of H3N2 influenza strains in Zhuhai in 2008: K140I in all of H3N2 influenza strains, L157S in 08-0343 and 08-0677, K158R in 08-0466, 08-0620 and 08-0667, K173E in 08-0466 and 08-0620, K173N in 08-0667, and I192T in 08-0667. The epitopes of HA1 district of H3N2 influenza strains in Zhuhai in 2009 are different from that of H3N2 influenza vaccine during the same time: K173Q and P194L occur in all of H3N2 influenza strains, N144K, K158N, and N189K occur in the strains except the strain 09-0056. HA1 domain of H3N2 influenza strains in 2009 has lost a glycosylation site at amino acid position 144 while the glycosylation sites of HA1 domain of H3N2 influenza stains isolated in 2008 remained. This study suggested that H3N2 influenza virus in Zhuhai in 2008 was not evolved a novel variant and H3N2 influenza variant in 2009 was attributed to antigenic drift in HA1 district.
Animals
;
Antigens, Viral
;
immunology
;
Cell Line
;
China
;
Dogs
;
Epitopes
;
immunology
;
Glycosylation
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Humans
;
Influenza A Virus, H3N2 Subtype
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Mutation
;
Phylogeny
;
Sequence Analysis, DNA
9.Generation of glyco-engineered BY2 cell lines with decreased expression of plant-specific glycoepitopes.
Bo-Jiao YIN ; Ting GAO ; Nuo-Yan ZHENG ; Yin LI ; San-Yuan TANG ; Li-Ming LIANG ; Qi XIE
Protein & Cell 2011;2(1):41-47
Plants are known to be efficient hosts for the production of mammalian therapeutic proteins. However, plants produce complex N-glycans bearing β1,2-xylose and core α1,3-fucose residues, which are absent in mammals. The immunogenicity and allergenicity of plant-specific Nglycans is a key concern in mammalian therapy. In this study, we amplified the sequences of 2 plant-specific glycosyltransferases from Nicotiana tabacum L. cv Bright Yellow 2 (BY2), which is a well-established cell line widely used for the expression of therapeutic proteins. The expression of the endogenous xylosyltranferase (XylT) and fucosyltransferase (FucT) was downregulated by using RNA interference (RNAi) strategy. The xylosylated and core fucosylated N-glycans were significantly, but not completely, reduced in the glycoengineered lines. However, these RNAi-treated cell lines were stable and viable and did not exhibit any obvious phenotype. Therefore, this study may provide an effective and promising strategy to produce recombinant glycoproteins in BY2 cells with humanized N-glycoforms to avoid potential immunogenicity.
Amino Acid Sequence
;
Blotting, Western
;
Carbohydrate Sequence
;
Cell Line
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Down-Regulation
;
Epitopes
;
genetics
;
immunology
;
Fucose
;
metabolism
;
Fucosyltransferases
;
chemistry
;
deficiency
;
genetics
;
immunology
;
Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Molecular Sequence Data
;
Pentosyltransferases
;
chemistry
;
deficiency
;
genetics
;
immunology
;
Polysaccharides
;
chemistry
;
immunology
;
Protein Engineering
;
methods
;
RNA Interference
;
Species Specificity
;
Tobacco
;
cytology
;
genetics
;
Xylose
;
metabolism
10.Progress of researches on the allergens Ara h 1, Ara h 2 and Ara h 3 from peanut.
Shengjuan JIANG ; Zhengyi ZHOU ; Yujun SUN ; Songhua WANG
Journal of Biomedical Engineering 2010;27(6):1401-1405
Peanut is one of the most popular foods in the world due to its high nutrition; however, it contains multiple seed storage proteins which are identified as allergens and hence are the most common cause of life-threatening, IgE-mediated anaphylaxis among the hypersensitive individuals. Three peanut proteins, Arachis hypogaea allergy 1, 2, 3 (Ara h 1, Ara h 2 and Ara h 3), which have the common biochemical characteristics like resistance to proteases and heat, are considered as the major allergens because they are recognized by serum IgE from a peanut-allergic patient population. The linear IgE-binding epitopes in the allergens lay the foundation of the anaphylaxis in the peanut-allergic individuals. Peanut allergy is often a life-long problem, so many investigators are focusing on decreasing clinical reactivity. In this review, the latest advances in the researches on biochemical characteristics, structure and function of the three major allergens were described and particular attention was given to the immunity properties of the three allergens. The future research directions were also discussed.
2S Albumins, Plant
;
chemistry
;
genetics
;
immunology
;
Animals
;
Antigens, Plant
;
chemistry
;
genetics
;
immunology
;
Arachis
;
chemistry
;
DNA
;
genetics
;
Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Humans
;
Immunoglobulin E
;
genetics
;
Plant Proteins
;
chemistry
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail