1.Itaconate derivative 4-OI inhibits M1 macrophage polarization and restores its impaired function in immune thrombocytopenia through metabolic reprogramming.
Qiang LIU ; Anli LIU ; Shaoqiu LENG ; Xiaoyu ZHANG ; Xiaolin WANG ; Zhang CHENG ; Shuwen WANG ; Jun PENG ; Qi FENG
Chinese Medical Journal 2025;138(16):2006-2015
BACKGROUND:
Macrophage polarization anomalies and dysfunction play a crucial role in the pathogenesis of immune thrombocytopenia (ITP). Itaconate is a Krebs cycle-derived immunometabolite synthesized by myeloid cells to modulate cellular metabolism and inflammatory responses. This study aimed to evaluate the immunoregulatory effects of an itaconate derivative on macrophages in patients with ITP.
METHODS:
Peripheral blood-derived macrophages from patients with ITP and healthy controls were treated with 4-octyl itaconate (4-OI), a derivative of itaconate that can penetrate the cell membrane. Macrophage polarization, antigen-presenting functions, and phagocytic capability were measured via flow cytometry and enzyme-linked immunosorbent assay (ELISA). Macrophage glycolysis in patients with ITP and the metabolic regulatory effect of 4-OI were detected using a Seahorse XFe96 Analyzer. An active murine model of ITP was used to evaluate the therapeutic effects of 4-OI in vivo .
RESULTS:
4-OI reduced the levels of CD80 and CD86 in M1 macrophages and suppressed the release of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 pro-inflammatory cytokines, suggesting that 4-OI could hinder the polarization of macrophages toward an M1 phenotype. We found that 4-OI pretreated M1 macrophages reduced the proliferation of CD4 + T cells and promoted the differentiation of regulatory T cells. In addition, after 4-OI treatment, the phagocytic capacity of M1 macrophages toward antibody-coated platelets decreased significantly in patients with ITP. In addition, the glycolytic function of M1 macrophages was elevated in individuals with ITP compared to those in healthy controls. 4-OI treatment downregulated glycolysis in M1 macrophages. The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) also inhibited the polarization of M1 macrophages and restored their functions. In vivo , 4-OI treatment significantly increased platelet counts in the active ITP murine model.
CONCLUSIONS
Itaconate derivative 4-OI inhibited M1 macrophage polarization and restored impaired functions through metabolic reprogramming. This study provides a novel therapeutic option for ITP.
Macrophages/metabolism*
;
Humans
;
Animals
;
Succinates/pharmacology*
;
Mice
;
Male
;
Female
;
Adult
;
Middle Aged
;
Flow Cytometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Enzyme-Linked Immunosorbent Assay
;
Purpura, Thrombocytopenic, Idiopathic/metabolism*
;
Glycolysis/drug effects*
;
Metabolic Reprogramming
2.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
3.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
4.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
5.Mechanism of Tougu Xiaotong Capsules in alleviating glycolytic metabolism disorder of chondrocytes in osteoarthritis by modulating circFOXO3.
Chang-Long FU ; Yan LUO ; Jia-Jia XU ; Yan-Ming LIN ; Qing LIN ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(16):4641-4648
From the perspective of circular RNA forkhead box protein O3(circFOXO3) regulating glycolysis in osteoarthritis(OA) chondrocytes, this study investigated the mechanism by which Tougu Xiaotong Capsules(TGXTC) alleviated OA degeneration. In in vivo experiments, after randomized grouping and relevant interventions, morphological staining was used to observe structural changes in cartilage tissue. The mRNA level of circFOXO3 in cartilage tissue was detected by real-time quantitative PCR(RT-qPCR). Western blot analysis was used to detect changes in the expression of glucose transporter 1(GLUT1), hexokinase 2(HK2), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and matrix metalloproteinase 13(MMP13). In in vitro experiments, fluorescence in situ hybridization(FISH) was used to detect circFOXO3 expression in chondrocytes from each group. A lentiviral vector was used to construct circFOXO3-silenced(sh-circFOXO3) chondrocytes. RT-qPCR was used to analyze the changes in circFOXO3 levels after silencing, and Western blot was used to assess the regulatory effects of TGXTC on GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in interleukin-1β(IL-1β)-induced chondrocytes under sh-circFOXO3 conditions. Masson staining and alcian blue staining results showed that the cartilage layer structure in the TGXTC and positive drug groups was improved compared with that in the model group. The mRNA level of circFOXO3 was significantly upregulated in both the TGXTC and positive drug groups, while the expression of the above-mentioned proteins was significantly reduced. FISH results showed that TGXTC upregulated the fluorescence intensity of circFOXO3 in IL-1β-induced chondrocytes. In the circFOXO3 silencing experiment, compared with the IL-1β group, circFOXO3 levels in the IL-1β + sh-circFOXO3 group were significantly decreased. Compared with the IL-1β + TGXTC group, circFOXO3 levels were significantly reduced in the IL-1β + sh-circFOXO3 + TGXTC group. Western blot results indicated that the elevated levels of GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in chondrocytes of the IL-1β group were significantly inhibited by TGXTC intervention. However, this regulatory effect was attenuated after circFOXO3 silencing. In conclusion, TGXTC alleviate glycolytic metabolism disorder in OA chondrocytes and delay OA degeneration by regulating circFOXO3.
Chondrocytes/metabolism*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
RNA, Circular/metabolism*
;
Osteoarthritis/genetics*
;
Glycolysis/drug effects*
;
Humans
;
Forkhead Box Protein O3/metabolism*
;
Male
;
Capsules
;
Matrix Metalloproteinase 13/genetics*
6.Triclocarban impacts human sperm motility by inhibiting glycolysis and oxidative phosphorylation.
Long-Long FU ; Wei-Zhou WANG ; Yan FENG ; Fu CHEN ; Bin LIU ; Liang HUANG ; Lin-Yuan ZHANG ; Lei CHEN
Asian Journal of Andrology 2025;27(6):707-713
Triclocarban (TCC) is a broad-spectrum antimicrobial widely used in various personal care products, textiles, and children's toys. TCC has potential reproductive and developmental toxicity in animals. However, little is known regarding the effect of TCC on human sperm function. In this study, an in vitro assay was used to investigate the effects of TCC on normal human spermatozoa and the possible underlying mechanisms involved. Semen from healthy male donors was collected and cultured in complete Biggers, Whitten and Whittingham (BWW) and low-sugar BWW media, followed by treatment with TCC at concentrations of 0, 0.1 µmol l -1 , 1 µmol l -1 , 10 µmol l -1 , and 100 µmol l -1 for 4 h. TCC was found to reduce the sperm total motility and progressive motility. Moreover, the sperm kinematic parameters, straight-line velocity (VSL), average path velocity (VAP), and curvilinear velocity (VCL) were affected in a dose-dependent manner. After treatment with TCC at the lowest effective concentration of 10 µmol l -1 , TCC caused a significant decrease in mitochondrial adenosine triphosphate (ATP) production and mitochondrial membrane potential (MMP) and a significant increase in reactive oxygen species (ROS), similar to the observations with the positive control carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), suggesting that TCC may decrease sperm motility by affecting the oxidative phosphorylation (OXPHOS) pathway. In a sugar-free and low-sugar BWW culture environment, TCC enhanced the damaging effect on sperm motility and ATP, MMP, and lactate decreased significantly, suggesting that TCC may also affect the glycolytic pathway that supplies energy to spermatozoa. This study demonstrates a possible mechanism of TCC toxicity in spermatozoa involving both the OXPHOS and glycolysis pathways.
Male
;
Sperm Motility/drug effects*
;
Humans
;
Carbanilides/pharmacology*
;
Oxidative Phosphorylation/drug effects*
;
Glycolysis/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Adenosine Triphosphate/metabolism*
;
Spermatozoa/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Mitochondria/metabolism*
7.Protective effect of achyranthes bidentata against doxorubicin-induced spermatogenic disorder in mice: An investigation based on the glycolytic metabolic pathway.
Man-Yu WANG ; Yang FU ; Pei-Pei YUAN ; Li-Rui ZHAO ; Yan ZHANG ; Qing-Yun MA ; Yan-Jun SUN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
National Journal of Andrology 2025;31(2):99-107
OBJECTIVE:
To investigate the protective effect of achyranthes bidentata (AB) on sperm quality in mice with spermatogenic disorder through the glycolytic metabolic pathway and its action mechanism.
METHODS:
We equally randomized 40 Kunming mice into a normal control, a model control, a low-dose AB (3.5 g/kg) and a high-dose AB group (7.0 g/kg), and established the model of spermatogenic disorder in the latter three groups of mice by intraperitoneal injection of doxorubicin (30 mg/kg). Two days after modeling, we collected the testis and kidney tissues and blood samples from the mice for observation of the pathological changes in the testis tissue by HE staining, detection of perm motility with the sperm quality analyzer, examination of the apoptosis of testis cells by flow cytometry, measurement of the levels of testosterone (T), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in the serum and testis tissue by ELISA, and determination of expressions of the key enzymes of glycolysis hexokinase Ⅱ (HK2), pyruvate kinase M2 (PKM2), platelet phosphofructokinase (PFKP), lactate dehydrogenase A (LDHA) and the meiosis proteins REC8 and SCP3 by Western blot, and the mRNA expressions of glycolytic phosphofructokinase 1 (PFK1), phosphoglycerate kinase 1 (PGK1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) by fluorescence quantitative PCR (FQ-PCR).
RESULTS:
Compared with the model controls, the mice in the AB groups showed significant increases in the testis coefficient, kidney index, sperm concentration, sperm motility, spermatogonia, primary spermatocytes, spermatids, sperm count and the serum T level (P<0.05 or P<0.01), but dramatic decreases in the apoptosis of testis cells and percentage of morphologically abnormal sperm (P<0.01). Achyranthes bidentata also significantly elevated the levels of SOD and CAT, and down-regulated the mRNA expressions of MDA, TNF-α and IL-1β (P<0.05 or P<0.01), and up-regulated the protein expressions of HK2, PKM2, PFKP, LDHA, REC8 and SCP3, and expressions of the glycolysis key genes Pfk1 and Pgk1 (P<0.05 or P<0.01).
CONCLUSION
Achyranthes bidentata ameliorates doxorubicin-induced spermatogenic disorder in mice by regulating the glycolytic pathway and reducing oxidative stress and the expressions of inflammatory factors.
Glycolysis/drug effects*
;
Doxorubicin/toxicity*
;
Spermatogenesis/drug effects*
;
Random Allocation
;
Male
;
Animals
;
Mice
;
Disease Models, Animal
;
Achyranthes/chemistry*
;
Spermatozoa/pathology*
;
Oxidative Stress/drug effects*
;
Primary Cell Culture
;
Apoptosis/drug effects*
;
Sperm Motility/drug effects*
;
Testis/pathology*
;
Infertility, Male/prevention & control*
;
Medicine, Chinese Traditional/methods*
;
Animals, Outbred Strains
8.Dahuang Zhechong Pill Improves Pulmonary Fibrosis through miR-29b-2-5p/HK2 Mediated Glycolysis Pathway.
Xiao-Yan HE ; Jing-Tao LIANG ; Jing-Yi XIAO ; Xin LI ; Xiao-Bo ZHANG ; Da-Yi CHEN ; Li-Juan WU
Chinese journal of integrative medicine 2025;31(7):600-612
OBJECTIVE:
To explore the preventive and therapeutic effects of Dahuang Zhechong Pill (DZP) on pulmonary fibrosis and the underlying mechanisms.
METHODS:
The first key rate-limiting enzyme hexokinase 2 (HK2) of glycolysis was silenced and over-expressed through small interfering RNA and lentivirus using lung fibroblast MRC-5 cell line, respectively. The cell viability, migration, invasion and proliferation were detected by cell counting kit-8, wound healing assay, transwell assay, and flow cytometry. The mRNA and protein expression levels of HK2 were detected by RT-PCR and Western blotting, respectively. The contents of glucose, adenosine triphosphate (ATP) and lactate in MRC-5 cells were determined by enzyme-linked immunosorbnent assay (ELISA). Then, the relationship between miR-29b-2-5p and HK2 was explored by luciferase reporter gene assay. Pulmonary fibrosis cell model was induced by transforming growth factor-β 1 (TGF-β 1) in MRC-5 cells, and the medicated serum of DZP (DMS) was prepared in rats. MRC-5 cells were divided into control, TGF-β 1, TGF-β 1+10% DMS, TGF-β 1+10% DMS+miR-29b-2-5p inhibitor, TGF-β 1+10% DMS+inhibitor negative control, TGF-β 1+10% DMS+miR-29b-2-5p mimic and TGF-β 1+10% DMS+mimic negative control groups. After miR-29b-2-5p mimics and inhibitors were transfected into MRC-5 cells, all groups except control and model group were treated with DMS. The effect of DMS on MRC-5 cells were detected using aforementioned methods and immunofluorescence. Similarly, the contents of glucose, ATP and lactate in each group were measured by ELISA.
RESULTS:
The mRNA and protein expressions of HK2 in MRC-5 cells were successfully silenced and overexpressed through si-HK2-3 and lentiviral transfection, respectively. After silencing HK2, the mRNA and protein expressions of HK2 were significantly decreased (P<0.01), and the concentrations of glucose, ATP and lactate were also significantly decreased (P<0.05). The proliferation, migration and invasion of MRC-5 cells were significantly declined (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly increased (P<0.01). After overexpressing HK2, the mRNA and protein expressions of HK2 were significantly increased (P<0.05), and the concentrations of glucose, ATP and lactate were also significantly increased (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were significantly increased (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly decreased (P<0.05). The relative luciferase activity of 3'UTR-WT+hsa-miR-29b-2-5p transfected with HK2 was significantly decreased (P<0.01). After miR-29b-2-5p mimic and inhibitor were transfected into the MRC-5 cells, DMS intervention could significantly reduce the concentration of glucose, ATP and lactate, and the mRNA and proteins expressions of HK2, phosphofructokinase and pyruvate kinase isoform M2 (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were alleviated (P<0.05 or P<0.01), and the deposition of fibronectin, α-smooth muscle actin, and collagen I were significantly decreased (P<0.05 or P<0.01).
CONCLUSIONS
Glycolysis is closely related to pulmonary fibrosis. DZP reduced glycolysis and inhibited fibroblasts' excessive differentiation and abnormal collagen deposition through the miR-29b-2-5p/HK2 pathway, which played a role in delaying the process of pulmonary fibrosis.
MicroRNAs/genetics*
;
Glycolysis/genetics*
;
Animals
;
Pulmonary Fibrosis/metabolism*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Hexokinase/genetics*
;
Cell Line
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Movement/drug effects*
;
Male
;
Cell Survival/drug effects*
;
Signal Transduction/drug effects*
9.Hesperidin Suppressed Colorectal Cancer through Inhibition of Glycolysis.
Ke-Xiang SUN ; Wei-Shan TAN ; Hao-Yue WANG ; Jia-Min GAO ; Shu-Yun WANG ; Man-Li XIE ; Wan-Li DENG
Chinese journal of integrative medicine 2025;31(6):529-540
OBJECTIVE:
To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines.
METHODS:
In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells. To confirm the apoptotic-inducing effect of hesperidin, apoptosis and cycle assays were employed. Western blot, glucose uptake, and lactate production determination measurements were applied to determine inhibitory effects of hesperidin (0, 25 and 50 µmol/L) on glycolysis. In vivo, according to the random number table method, nude mice with successful tumor loading were randomly divided into vehicle, low-dose hesperidin (20 mg/kg) and high-dose hesperidin (60 mg/kg) groups, with 6 mice in each group. The body weights and tumor volumes of mice were recorded during 4-week treatment. The expression of key glycolysis rate-limiting enzymes was determined using Western blot, and glucose uptake and lactate production were assessed. Finally, protein interactions were probed with DirectDIA Quantitative Proteomics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
RESULTS:
Hesperidin could inhibit CRC cell line growth (P<0.05 or P<0.01). Moreover, hesperidin presented an inhibitory effect on the migrating abilities of CRC cells. Hesperidin also promoted apoptosis and cell cycle alterations (P<0.05). The immunoblotting results manifested that hesperidin decreased the levels of hexokinase 2, glucose transporter protein 1 (GLUT1), GLUT3, L-lactate dehydrogenase A, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), PFKFB3, and pyruvate kinase isozymes M2 (P<0.01). It remarkably suppressed tumor xenograft growth in nude mice. GO and KEGG analyses showed that hesperidin treatment altered metabolic function.
CONCLUSION
Hesperidin inhibits glycolysis and is a potential therapeutic choice for CRC treatment.
Hesperidin/therapeutic use*
;
Colorectal Neoplasms/metabolism*
;
Glycolysis/drug effects*
;
Animals
;
Humans
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glucose/metabolism*
;
Cell Cycle/drug effects*
;
Mice, Inbred BALB C
;
Mice
;
HCT116 Cells
;
Lactic Acid
10.Traditional Chinese medicine for regulating glycolysis to remodel the tumor immune microenvironment: research progress and future prospects.
Songqi HE ; Yang LIU ; Mengchen QIN ; Chunyu HE ; Wentao JIANG ; Yiqin WANG ; Sirui TAN ; Haiyan SUN ; Haitao SUN
Journal of Southern Medical University 2025;45(10):2277-2284
Immune suppression in the tumor microenvironment (TME) is closely related to abnormal glycolysis. Tumor cells gain metabolic advantages and suppress immune responses through the "Warburg effect". Traditional Chinese medicine (TCM) has been shown to regulate key glycolysis enzymes (such as HK2 and PKM2), metabolic signaling pathways (such as PI3K/AKT/mTOR, HIF-1α) and non-coding RNAs at multiple targets, thus synergistically inhibiting lactate accumulation, improving vascular abnormalities, and relieving metabolic inhibition of immune cells. Studies have shown that TCM monomers and formulas can promote immune cell infiltration and functions, improve metabolic microenvironment, and with the assistance by the nano-delivery system, enhance the precision of treatment. However, the dynamic mechanism of the interaction between TCM-regulated glycolysis and TME has not been fully elucidated, for which single-cell sequencing and other technologies provide important technical support to facilitate in-depth analysis and clinical translational research. Future studies should be focused on the synergistic strategy of "metabolic reprogramming-immune activation" to provide new insights into the mechanisms of tumor immunotherapy.
Humans
;
Tumor Microenvironment/immunology*
;
Glycolysis/drug effects*
;
Neoplasms/drug therapy*
;
Medicine, Chinese Traditional
;
Signal Transduction
;
Drugs, Chinese Herbal/pharmacology*

Result Analysis
Print
Save
E-mail