1.Application of active glucose monitoring in the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb.
Jing YANG ; Hao-Tian WU ; Ni MA ; Jia-Xing WU ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):923-928
OBJECTIVES:
To investigate the role of active glucose monitoring in preventing hypoglycemia during the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb (GSD-Ⅰb).
METHODS:
A retrospective analysis was performed for the clinical data of children with GSD-Ⅰb who were diagnosed and treated in Guangdong Provincial People's Hospital from June 2021 to August 2024. The effect of active glucose monitoring on hypoglycemic episodes during the perioperative period of gastrointestinal endoscopy was analyzed.
RESULTS:
A total of 14 children with GSD-Ⅰb were included, among whom there were 7 boys and 7 girls, with a mean age of 10.0 years. Among 34 hospitalizations, there were 15 cases of hypoglycemic episodes (44%), among which 6 symptomatic cases (1 case with blood glucose level of 1.6 mmol/L and 5 cases with blood glucose level of <1.1 mmol/L) occurred without active monitoring, while 9 asymptomatic cases (with blood glucose level of 1.2-3.9 mmol/L) were detected by active monitoring. The predisposing factors for hypoglycemic episodes included preoperative fasting (5 cases, 33%), delayed feeding (7 cases, 47%), vomiting (2 cases, 13%), and parental omission (1 case, 7%). Two children experienced two hypoglycemic episodes during the same period of hospitalization, and no child experienced subjective symptoms prior to hypoglycemic episodes. Treatment methods included nasogastric glucose administration (1 case, 7%), intravenous injection of glucose (14 cases, 93%), and continuous glucose infusion (4 cases, 27%). Blood glucose returned to 3.5-6.9 mmol/L within 10 minutes after intervention and remained normal after dietary resumption.
CONCLUSIONS
Active glucose monitoring during the perioperative period of gastrointestinal endoscopy can help to achieve early detection of hypoglycemic states in children with GSD-Ⅰb, prevent hypoglycemic episodes, and enhance precise diagnosis and treatment.
Humans
;
Female
;
Male
;
Child
;
Retrospective Studies
;
Blood Glucose/analysis*
;
Hypoglycemia/etiology*
;
Glycogen Storage Disease Type I/blood*
;
Endoscopy, Gastrointestinal
;
Perioperative Period
;
Child, Preschool
;
Adolescent
2.Efficacy and safety of empagliflozin in the treatment of glycogen storage disease-associated inflammatory bowel disease.
Dan-Xia LIANG ; Hao-Tian WU ; Jing YANG ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):929-935
OBJECTIVES:
To investigate the efficacy and safety of empagliflozin in patients with glycogen storage disease (GSD)-associated inflammatory bowel disease (IBD).
METHODS:
A cross-sectional study was conducted, enrolling 25 patients with GSD-associated IBD who received empagliflozin treatment. General data, details of empagliflozin use, and adverse events were collected. Clinical symptoms and biochemical parameters before and after empagliflozin therapy were compared.
RESULTS:
Twenty-five patients with GSD-associated IBD were included, with a median age at diagnosis of 0.7 years, and a mean age at initiation of empagliflozin therapy of (11 ± 6) years. The initial dose of empagliflozin was (0.30 ± 0.13) mg/(kg·d), with a maintenance dose of (0.40 ± 0.21) mg/(kg·d), and a treatment duration of (34 ± 6) months. Seventy-eight percent (18/23) of patients' parents reported that empagliflozin therapy reduced the frequency of infections and oral ulcers, and increased neutrophil counts. Clinically, the number of patients with anorexia decreased from 12 to 5 after treatment, and 30% showed improved appetite (P<0.05). The numbers of patients with diarrhea, mucus/bloody stools, perianal disease, and oral ulcers decreased from 19, 9, 11, and 21 before treatment to 7, 1, 0, and 10 after treatment, respectively (P<0.05). Laboratory findings showed that absolute neutrophil counts increased, while platelet counts, lactate, and uric acid levels decreased significantly after empagliflozin treatment (P<0.05). Adverse reactions occurred in 7 patients (28%) during empagliflozin treatment. Two cases occurred in the treatment initiation phase, presenting as hypotension or profuse sweating with dehydration, along with urinary tract infections (UTIs); empagliflozin was discontinued in both cases. During the maintenance phase, 3 cases of UTIs and 2 cases of hypoglycemia (one with profuse sweating) were reported.
CONCLUSIONS
Empagliflozin therapy can increase neutrophil counts, reduce the incidence of infections and oral ulcers, alleviate diarrhea and abdominal pain, improve appetite, and ameliorate platelet count, lactate, and uric acid levels in patients with GSD-associated IBD, demonstrating significant clinical benefit. UTIs, hypoglycemia, hypotension, profuse sweating, and dehydration may be potential adverse reactions associated with empagliflozin therapy.
Humans
;
Benzhydryl Compounds/adverse effects*
;
Male
;
Female
;
Glucosides/adverse effects*
;
Inflammatory Bowel Diseases/etiology*
;
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Adolescent
;
Glycogen Storage Disease/drug therapy*
;
Infant
4.Analysis of lysosomal enzyme activity and genetic variants in a child with late-onset Pompe disease.
Tiantian HE ; Jieni JIANG ; Yueyue XIONG ; Dan YU ; Xuemei ZHANG
Chinese Journal of Medical Genetics 2023;40(6):711-717
OBJECTIVE:
To explore the clinical features, lysosomal enzymatic [acid α-glucosidase (GAA)] activities and genetic variants in a child with late-onset Pompe disease (LOPD).
METHODS:
Clinical data of a child who had presented at the Genetic Counseling Clinic of West China Second University Hospital in August 2020 was retrospectively analyzed. Blood samples were collected from the patient and her parents for the isolation of leukocytes and lymphocytes as well as DNA extraction. The activity of lysosomal enzyme GAA in leukocytes and lymphocytes was analyzed with or without addition of inhibitor of GAA isozyme. Potential variants in genes associated with neuromuscular disorders were analyzed, in addition with conservation of the variant sites and protein structure. The remaining samples from 20 individuals undergoing peripheral blood lymphocyte chromosomal karyotyping were mixed and used as the normal reference for the enzymatic activities.
RESULTS:
The child, a 9-year-old female, had featured delayed language and motor development from 2 years and 11 months. Physical examination revealed unstable walking, difficulty in going upstairs and obvious scoliosis. Her serum creatine kinase was significantly increased, along with abnormal electromyography, whilst no abnormality was found by cardiac ultrasound. Genetic testing revealed that she has harbored compound heterozygous variants of the GAA gene, namely c.1996dupG (p.A666Gfs*71) (maternal) and c.701C>T (p.T234M) (paternal). Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1996dupG (p.A666Gfs*71) was rated as pathogenic (PVS1+PM2_Supporting+PM3), whilst the c.701C>T (p.T234M) was rated as likely pathogenic (PM1+PM2_Supporting+PM3+PM5+PP3). The GAA in the leukocytes from the patient, her father and mother were respectively 76.1%, 91.3% and 95.6% of the normal value without the inhibitor, and 70.8%, 112.9% and 128.2% of the normal value with the inhibitor, whilst the activity of GAA in their leukocytes had decreased by 6 ~ 9 times after adding the inhibitor. GAA in lymphocytes of the patient, her father and mother were 68.3%, 59.0% and 59.5% of the normal value without the inhibitor, and 41.0%, 89.5% and 57.7% of the normal value with the inhibitor, the activity of GAA in lymphocytes has decreased by 2 ~ 5 times after adding the inhibitor.
CONCLUSION
The child was diagnosed with LOPD due to the c.1996dupG and c.701C>T compound heterozygous variants of the GAA gene. The residual activity of GAA among LOPD patients can range widely and the changes may be atypical. The diagnosis of LOPD should not be based solely on the results of enzymatic activity but combined clinical manifestation, genetic testing and measurement of enzymatic activity.
Humans
;
Child
;
Male
;
Female
;
Glycogen Storage Disease Type II/pathology*
;
Retrospective Studies
;
alpha-Glucosidases/genetics*
;
Mothers
;
Lysosomes/pathology*
;
Mutation
5.Research progress of nervous system damage in Pompe disease.
Wen-Chao ZHANG ; Ying-Ying MAO ; Qian CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(4):420-424
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Humans
;
Glycogen Storage Disease Type II/drug therapy*
;
alpha-Glucosidases
;
Quality of Life
;
Enzyme Replacement Therapy
6.A case of glycogen storage disease type Ⅰa with gout as the first manifestation.
Lingying DAN ; Xiaoxiao SONG ; Hanxiao YU
Journal of Zhejiang University. Medical sciences 2023;52(2):230-236
A 24-year-old male was admitted due to recurrent redness, swelling, fever and pain in the ankle, frequently accompanied by hungry feeling. Dual energy CT scans showed multiple small gouty stones in the posterior edge of the bilateral calcaneus and in the space between the bilateral metatarsophalangeal joints. The laboratory examination results indicated hyperlipidemia, high lactate lipids, and low fasting blood glucose. Histopathology of liver biopsy showed significant glycogen accumulation. The results of gene sequencing revealed the compound heterozygous mutations of the G6PC gene c.248G>A (p.Arg83His) and c.238T>A (p.Phe80Ile) in the proband. The c.248G>A mutation was from mother and the c.238T>A mutation was from father. The diagnosis of glycogen storage disease type Ⅰa was confirmed. After giving a high starch diet and limiting monosaccharide intake, as well as receiving uric acid and blood lipids lowering therapy, the condition of the patient was gradually stabilized. After a one-year follow-up, there were no acute episodes of gout and a significant improvement in hungry feeling in the patient.
Male
;
Humans
;
Young Adult
;
Adult
;
Glycogen Storage Disease Type I/genetics*
;
Gout/genetics*
;
Mutation
;
Lipids
7.Short-term efficacy of empagliflozin in children with glycogen storage disease type Ⅰb.
Jing Jing JIANG ; Xin ZHENG ; Ming Sheng MA ; Xing Ge CUI ; Shan JIAN ; Xiao Yan TANG ; Xu Dong BAO ; Si Min ZHANG ; Jing Ran MA ; Hong Mei SONG ; Zheng Qing QIU
Chinese Journal of Pediatrics 2023;61(6):515-519
Objective: To analyze the short-time efficacy of empagliflozin in the treatment of glycogen storage disease type Ⅰb (GSD Ⅰb). Methods: In this prospective open-label single-arm study, the data of 4 patients were collected from the pediatric department in Peking Union Medical College Hospital from December 2020 to December 2022. All of them were diagnosed by gene sequencing and had neutropenia. These patients received empagliflozin treatment. Their clinical symptoms such as height and weight increase, abdominal pain, diarrhea, oral ulcer, infection times, and drug applications were recorded at 2 weeks, 1 month, 2 months, 3 months, 6 months, 9 months, 12 months, and 15 months after treatment to assess the therapeutic effect. The liquid chromatography-tandem mass spectrometry method was used to monitor the changes in 1, 5-anhydroglucitol (1, 5AG) concentration in plasma. At the same time, adverse reactions such as hypoglycemia and urinary tract infection were closely followed up and monitored. Results: The 4 patients with GSD Ⅰb were 15, 14, 4 and 14 years old, respectively at the beginning of empagliflozin treatment, and were followed up for 15, 15, 12 and 6 months, respectively. Maintenance dose range of empagliflozin was 0.24-0.39 mg/(kg·d). The frequency of diarrhea and abdominal pain decreased in cases 2, 3, and 4 at 1, 2 and 3 months of treatment, respectively. Their height and weight increased at different degrees.The absolute count of neutrophils increased from 0.84×109, 0.50×109, 0.48×109, 0.48×109/L to 1.48×109, 3.04×109, 1.10×109, 0.73×109/L, respectively. Granulocyte colony-stimulating factor was gradually reduced in 1 patients and stopped in 3 patient. Plasma 1, 5 AG levels in 2 children were significantly decreased after administration of empagliflozin (from 46.3 mg/L to 9.6 mg/L in case 2, and from 56.1 mg/L to 15.0 mg/L in case 3). All 4 patients had no adverse reactions such as hypoglycemia, abnormal liver or kidney function, or urinary system infection. Conclusion: In short-term observation, empagliflozin can improve the symptoms of GSD Ⅰb oral ulcers, abdominal pain, diarrhea, and recurrent infection, also can alleviate neutropenia and decrease 1, 5AG concentration in plasma, with favorable safety.
Humans
;
Child
;
Child, Preschool
;
Adolescent
;
Prospective Studies
;
Glycogen Storage Disease Type I/drug therapy*
;
Neutropenia
;
Abdominal Pain
;
Diarrhea/drug therapy*
;
Hypoglycemia
10.Splicing abnormalities caused by a novel mutation in the PHKA2 gene in children with glycogen storage disease type IX.
Zhi Hua ZHANG ; Bi Xia ZHENG ; Yu Jie ZHUO ; Yu JIN ; Zhi Feng LIU ; Yu Can ZHENG
Chinese Journal of Hepatology 2023;31(4):428-432
Objective: Glycogen storage disease type IX (GSD-IX) is a rare primary glucose metabolism abnormality caused by phosphorylase kinase deficiency and a series of pathogenic gene mutations. The clinical characteristics, gene analysis, and functional verification of a mutation in a child with hepatomegaly are summarized here to clarify the pathogenic cause of the disease. Methods: The clinical data of a child with GSD-IX was collected. Peripheral blood from the child and his parents was collected for genomic DNA extraction. The patient's gene diagnosis was performed by second-generation sequencing. The suspected mutations were verified by Sanger sequencing and bioinformatics analysis. The suspected splicing mutations were verified in vivo by RT-PCR and first-generation sequencing. Results: Hepatomegaly, transaminitis, and hypertriglyceridemia were present in children. Liver biopsy pathological examination results indicated glycogen storage disease. Gene sequencing revealed that the child had a c.285 + 2_285 + 5delTAGG hemizygous mutation in the PHKA2 gene. Sanger sequencing verification showed that the mother of the child was heterozygous and the father of the child was of the wild type. Software such as HSF3.1 and ESEfinder predicted that the gene mutation affected splicing. RT-PCR of peripheral blood from children and his mother confirmed that the mutation had caused the skipping of exon 3 during the constitutive splicing of the PHKA2 gene. Conclusion: The hemizygous mutation in the PHKA2 gene (c.285 + 2_285 + 5delTAGG) is the pathogenic cause of the patient's disease. The detection of the novel mutation site enriches the mutation spectrum of the PHKA2 gene and serves as a basis for the family's genetic counseling.
Child
;
Humans
;
Exons
;
Glycogen Storage Disease/genetics*
;
Hepatomegaly/genetics*
;
Mutation
;
Phosphorylase Kinase/genetics*
;
Male
;
Female

Result Analysis
Print
Save
E-mail