1.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
2.Application of active glucose monitoring in the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb.
Jing YANG ; Hao-Tian WU ; Ni MA ; Jia-Xing WU ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):923-928
OBJECTIVES:
To investigate the role of active glucose monitoring in preventing hypoglycemia during the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb (GSD-Ⅰb).
METHODS:
A retrospective analysis was performed for the clinical data of children with GSD-Ⅰb who were diagnosed and treated in Guangdong Provincial People's Hospital from June 2021 to August 2024. The effect of active glucose monitoring on hypoglycemic episodes during the perioperative period of gastrointestinal endoscopy was analyzed.
RESULTS:
A total of 14 children with GSD-Ⅰb were included, among whom there were 7 boys and 7 girls, with a mean age of 10.0 years. Among 34 hospitalizations, there were 15 cases of hypoglycemic episodes (44%), among which 6 symptomatic cases (1 case with blood glucose level of 1.6 mmol/L and 5 cases with blood glucose level of <1.1 mmol/L) occurred without active monitoring, while 9 asymptomatic cases (with blood glucose level of 1.2-3.9 mmol/L) were detected by active monitoring. The predisposing factors for hypoglycemic episodes included preoperative fasting (5 cases, 33%), delayed feeding (7 cases, 47%), vomiting (2 cases, 13%), and parental omission (1 case, 7%). Two children experienced two hypoglycemic episodes during the same period of hospitalization, and no child experienced subjective symptoms prior to hypoglycemic episodes. Treatment methods included nasogastric glucose administration (1 case, 7%), intravenous injection of glucose (14 cases, 93%), and continuous glucose infusion (4 cases, 27%). Blood glucose returned to 3.5-6.9 mmol/L within 10 minutes after intervention and remained normal after dietary resumption.
CONCLUSIONS
Active glucose monitoring during the perioperative period of gastrointestinal endoscopy can help to achieve early detection of hypoglycemic states in children with GSD-Ⅰb, prevent hypoglycemic episodes, and enhance precise diagnosis and treatment.
Humans
;
Female
;
Male
;
Child
;
Retrospective Studies
;
Blood Glucose/analysis*
;
Hypoglycemia/etiology*
;
Glycogen Storage Disease Type I/blood*
;
Endoscopy, Gastrointestinal
;
Perioperative Period
;
Child, Preschool
;
Adolescent
3.Efficacy and safety of empagliflozin in the treatment of glycogen storage disease-associated inflammatory bowel disease.
Dan-Xia LIANG ; Hao-Tian WU ; Jing YANG ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):929-935
OBJECTIVES:
To investigate the efficacy and safety of empagliflozin in patients with glycogen storage disease (GSD)-associated inflammatory bowel disease (IBD).
METHODS:
A cross-sectional study was conducted, enrolling 25 patients with GSD-associated IBD who received empagliflozin treatment. General data, details of empagliflozin use, and adverse events were collected. Clinical symptoms and biochemical parameters before and after empagliflozin therapy were compared.
RESULTS:
Twenty-five patients with GSD-associated IBD were included, with a median age at diagnosis of 0.7 years, and a mean age at initiation of empagliflozin therapy of (11 ± 6) years. The initial dose of empagliflozin was (0.30 ± 0.13) mg/(kg·d), with a maintenance dose of (0.40 ± 0.21) mg/(kg·d), and a treatment duration of (34 ± 6) months. Seventy-eight percent (18/23) of patients' parents reported that empagliflozin therapy reduced the frequency of infections and oral ulcers, and increased neutrophil counts. Clinically, the number of patients with anorexia decreased from 12 to 5 after treatment, and 30% showed improved appetite (P<0.05). The numbers of patients with diarrhea, mucus/bloody stools, perianal disease, and oral ulcers decreased from 19, 9, 11, and 21 before treatment to 7, 1, 0, and 10 after treatment, respectively (P<0.05). Laboratory findings showed that absolute neutrophil counts increased, while platelet counts, lactate, and uric acid levels decreased significantly after empagliflozin treatment (P<0.05). Adverse reactions occurred in 7 patients (28%) during empagliflozin treatment. Two cases occurred in the treatment initiation phase, presenting as hypotension or profuse sweating with dehydration, along with urinary tract infections (UTIs); empagliflozin was discontinued in both cases. During the maintenance phase, 3 cases of UTIs and 2 cases of hypoglycemia (one with profuse sweating) were reported.
CONCLUSIONS
Empagliflozin therapy can increase neutrophil counts, reduce the incidence of infections and oral ulcers, alleviate diarrhea and abdominal pain, improve appetite, and ameliorate platelet count, lactate, and uric acid levels in patients with GSD-associated IBD, demonstrating significant clinical benefit. UTIs, hypoglycemia, hypotension, profuse sweating, and dehydration may be potential adverse reactions associated with empagliflozin therapy.
Humans
;
Benzhydryl Compounds/adverse effects*
;
Male
;
Female
;
Glucosides/adverse effects*
;
Inflammatory Bowel Diseases/etiology*
;
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Adolescent
;
Glycogen Storage Disease/drug therapy*
;
Infant
4.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
6.The mechanism of GSK-3β/CREB signaling pathway regulating macrophage pyroptosis and participating in the occurrence and development of diabetic foot ulcer.
Hao HE ; Yanli YANG ; Li ZHANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1083-1088
Objective To investigate the role and possible mechanism of glycogen synthase kinase-3 beta (GSK-3β)/cAMP response element binding protein (CREB) signaling pathway in regulating macrophage pyroptosis in the pathogenesis and development of diabetic foot ulcer (DFU). Methods Thirty rats were randomly divided into control group, DFU group and GSK-3β inhibited group, with 10 rats in each group. Fasting blood glucose (FBG) was detected by dynamic blood glucose detector. The wound healing of each group was observed and recorded. The histopathologic changes of the wound were detected by HE staining. The level of wound fibrosis was detected by Masson staining. The protein levels of GSK-3β, CREB, gasdermin E (GSDME) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in wound tissue were detected by Western blotting. The co-expression of F4/80, GSDME and NLRP3 in wound tissue was detected by immunofluorescence staining. The serum levels of IL-1β and IL-18 were detected by ELISA. Results Compared with the control group, FBG in DFU group was increased. Compared with DFU group, FBG in GSK-3β inhibition group was decreased. The wound healing rate of rats in the inhibited GSK-3β group was higher than that in the DFU group from day 3 to day 14, and the difference was significant on day 14. Therefore, samples from day 14 were used in the follow-up experiment. Compared with the control group, the wound tissue of rats in DFU group was significantly damaged with collagen deposition defect, and the expressions of GSK-3β, CREB and apoptosis-related proteins GSDME and NLRP3 were increased, and the co-expressions of F4/80 and GSDME, F4/80 and NLRP3 were increased. Serum levels of IL-1β and IL-18 were increased. Compared with DFU group, most of the wound tissues of rats in GSK-3β group were healed. Collagen deposition at the fracture was increased. The expressions of GSK-3β, CREB and GSDME, NLRP3 were decreased. The expression levels of F4/80 and GSDME were reduced, along with a decrease in the co-expression of F4/80 and NLRP3. Additionally, there was a reduction in serum concentrations of IL-1β and IL-18. Conclusion GSK-3β/CREB signaling pathway and macrophage pyroptosis are significantly up-regulated in DFU rats. Inhibition of this pathway can promote DFU healing and down-regulate macrophage pyroptosis level.
Animals
;
Pyroptosis
;
Diabetic Foot/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Signal Transduction
;
Male
;
Rats
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Macrophages/metabolism*
;
Rats, Sprague-Dawley
;
Wound Healing
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-1beta/metabolism*
7.Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway.
Chu-Lan XIAO ; Zhi-Peng ZHONG ; Can LÜ ; Bing-Jie GUO ; Jiao-Jiao CHEN ; Tong ZHAO ; Zi-Fei YIN ; Bai LI
Journal of Integrative Medicine 2023;21(2):184-193
OBJECTIVE:
Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.
METHODS:
A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.
RESULTS:
Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.
CONCLUSION
Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.
Humans
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
Mice, Nude
;
Glycogen Synthase Kinase 3 beta/genetics*
;
beta Catenin/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Desmin/therapeutic use*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Hypoxia
;
RNA, Messenger/therapeutic use*
;
Cell Proliferation
8.Marsdenia tenacissima injection induces the apoptosis of prostate cancer by regulating the AKT/GSK3β/STAT3 signaling axis.
Xiaolan LI ; Songhua HE ; Wei LIANG ; Weiquan ZHANG ; Xin CHEN ; Qiaofeng LI ; Xin YANG ; Yanying LIU ; Dan ZHU ; Li LI ; Buming LIU ; Zhiheng SU ; Jie CHEN ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):113-126
Marsdenia tenacissima injection, a standard Marsdenia tenacissima extract (MTE), has been approved as an adjuvant therapeutic agent for various cancers. Our previous study showed that MTE inhibited the proliferation and metastasis of prostate cancer (PCa) cells. However, the underlying mechanisms and active ingredients of MTE against PCa were not completely understood. This study revealed that MTE induced significant decreases in cell viability and clonal growth in PCa cells. In addition, MTE induced the apoptosis of DU145 cells by reducing the mitochondrial membrane potential and increasing the expression of Cleaved Caspase 3/7, Cyt c, and Bax. In vivo, DU145 xenografted NOD-SCID mice treated with MTE showed significantly decreased tumor size. TUNEL staining and Western blot confirmed the pro-apoptotic effects of MTE. Network pharmacology analysis collected 196 ingredients of MTE linked to 655 potential targets, and 709 PCa-associated targets were retrieved, from which 149 overlapped targets were screened out. Pathway enrichment analysis showed that the HIF-1, PI3K-AKT, and ErbB signaling pathways were closely related to tumor apoptosis. Western blot results confirmed that MTE increased the expression of p-AKTSer473 and p-GSK3βSer9, and decreased the expression of p-STAT3Tyr705in vitro and in vivo. A total of 13 compounds in MTE were identified by HPLC-CAD-QTOF-MS/MS and UPLC-QTOF-MS/MS. Molecular docking analysis indicated that six compounds may interact with AKT, GSK3β, and STAT3. In conclusion, MTE induces the endogenous mitochondrial apoptosis of PCa by regulating the AKT/GSK3β/STAT3 signaling axis, resulting in inhibition of PCa growth in vitro and in vivo.
Mice
;
Animals
;
Male
;
Humans
;
Mice, Inbred NOD
;
Mice, SCID
;
Marsdenia
;
Proto-Oncogene Proteins c-akt
;
Glycogen Synthase Kinase 3 beta
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Tandem Mass Spectrometry
;
Prostatic Neoplasms
;
Apoptosis
;
STAT3 Transcription Factor
9.Short-term efficacy of empagliflozin in children with glycogen storage disease type Ⅰb.
Jing Jing JIANG ; Xin ZHENG ; Ming Sheng MA ; Xing Ge CUI ; Shan JIAN ; Xiao Yan TANG ; Xu Dong BAO ; Si Min ZHANG ; Jing Ran MA ; Hong Mei SONG ; Zheng Qing QIU
Chinese Journal of Pediatrics 2023;61(6):515-519
Objective: To analyze the short-time efficacy of empagliflozin in the treatment of glycogen storage disease type Ⅰb (GSD Ⅰb). Methods: In this prospective open-label single-arm study, the data of 4 patients were collected from the pediatric department in Peking Union Medical College Hospital from December 2020 to December 2022. All of them were diagnosed by gene sequencing and had neutropenia. These patients received empagliflozin treatment. Their clinical symptoms such as height and weight increase, abdominal pain, diarrhea, oral ulcer, infection times, and drug applications were recorded at 2 weeks, 1 month, 2 months, 3 months, 6 months, 9 months, 12 months, and 15 months after treatment to assess the therapeutic effect. The liquid chromatography-tandem mass spectrometry method was used to monitor the changes in 1, 5-anhydroglucitol (1, 5AG) concentration in plasma. At the same time, adverse reactions such as hypoglycemia and urinary tract infection were closely followed up and monitored. Results: The 4 patients with GSD Ⅰb were 15, 14, 4 and 14 years old, respectively at the beginning of empagliflozin treatment, and were followed up for 15, 15, 12 and 6 months, respectively. Maintenance dose range of empagliflozin was 0.24-0.39 mg/(kg·d). The frequency of diarrhea and abdominal pain decreased in cases 2, 3, and 4 at 1, 2 and 3 months of treatment, respectively. Their height and weight increased at different degrees.The absolute count of neutrophils increased from 0.84×109, 0.50×109, 0.48×109, 0.48×109/L to 1.48×109, 3.04×109, 1.10×109, 0.73×109/L, respectively. Granulocyte colony-stimulating factor was gradually reduced in 1 patients and stopped in 3 patient. Plasma 1, 5 AG levels in 2 children were significantly decreased after administration of empagliflozin (from 46.3 mg/L to 9.6 mg/L in case 2, and from 56.1 mg/L to 15.0 mg/L in case 3). All 4 patients had no adverse reactions such as hypoglycemia, abnormal liver or kidney function, or urinary system infection. Conclusion: In short-term observation, empagliflozin can improve the symptoms of GSD Ⅰb oral ulcers, abdominal pain, diarrhea, and recurrent infection, also can alleviate neutropenia and decrease 1, 5AG concentration in plasma, with favorable safety.
Humans
;
Child
;
Child, Preschool
;
Adolescent
;
Prospective Studies
;
Glycogen Storage Disease Type I/drug therapy*
;
Neutropenia
;
Abdominal Pain
;
Diarrhea/drug therapy*
;
Hypoglycemia

Result Analysis
Print
Save
E-mail