1.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
2.Application of active glucose monitoring in the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb.
Jing YANG ; Hao-Tian WU ; Ni MA ; Jia-Xing WU ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):923-928
OBJECTIVES:
To investigate the role of active glucose monitoring in preventing hypoglycemia during the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb (GSD-Ⅰb).
METHODS:
A retrospective analysis was performed for the clinical data of children with GSD-Ⅰb who were diagnosed and treated in Guangdong Provincial People's Hospital from June 2021 to August 2024. The effect of active glucose monitoring on hypoglycemic episodes during the perioperative period of gastrointestinal endoscopy was analyzed.
RESULTS:
A total of 14 children with GSD-Ⅰb were included, among whom there were 7 boys and 7 girls, with a mean age of 10.0 years. Among 34 hospitalizations, there were 15 cases of hypoglycemic episodes (44%), among which 6 symptomatic cases (1 case with blood glucose level of 1.6 mmol/L and 5 cases with blood glucose level of <1.1 mmol/L) occurred without active monitoring, while 9 asymptomatic cases (with blood glucose level of 1.2-3.9 mmol/L) were detected by active monitoring. The predisposing factors for hypoglycemic episodes included preoperative fasting (5 cases, 33%), delayed feeding (7 cases, 47%), vomiting (2 cases, 13%), and parental omission (1 case, 7%). Two children experienced two hypoglycemic episodes during the same period of hospitalization, and no child experienced subjective symptoms prior to hypoglycemic episodes. Treatment methods included nasogastric glucose administration (1 case, 7%), intravenous injection of glucose (14 cases, 93%), and continuous glucose infusion (4 cases, 27%). Blood glucose returned to 3.5-6.9 mmol/L within 10 minutes after intervention and remained normal after dietary resumption.
CONCLUSIONS
Active glucose monitoring during the perioperative period of gastrointestinal endoscopy can help to achieve early detection of hypoglycemic states in children with GSD-Ⅰb, prevent hypoglycemic episodes, and enhance precise diagnosis and treatment.
Humans
;
Female
;
Male
;
Child
;
Retrospective Studies
;
Blood Glucose/analysis*
;
Hypoglycemia/etiology*
;
Glycogen Storage Disease Type I/blood*
;
Endoscopy, Gastrointestinal
;
Perioperative Period
;
Child, Preschool
;
Adolescent
3.Efficacy and safety of empagliflozin in the treatment of glycogen storage disease-associated inflammatory bowel disease.
Dan-Xia LIANG ; Hao-Tian WU ; Jing YANG ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):929-935
OBJECTIVES:
To investigate the efficacy and safety of empagliflozin in patients with glycogen storage disease (GSD)-associated inflammatory bowel disease (IBD).
METHODS:
A cross-sectional study was conducted, enrolling 25 patients with GSD-associated IBD who received empagliflozin treatment. General data, details of empagliflozin use, and adverse events were collected. Clinical symptoms and biochemical parameters before and after empagliflozin therapy were compared.
RESULTS:
Twenty-five patients with GSD-associated IBD were included, with a median age at diagnosis of 0.7 years, and a mean age at initiation of empagliflozin therapy of (11 ± 6) years. The initial dose of empagliflozin was (0.30 ± 0.13) mg/(kg·d), with a maintenance dose of (0.40 ± 0.21) mg/(kg·d), and a treatment duration of (34 ± 6) months. Seventy-eight percent (18/23) of patients' parents reported that empagliflozin therapy reduced the frequency of infections and oral ulcers, and increased neutrophil counts. Clinically, the number of patients with anorexia decreased from 12 to 5 after treatment, and 30% showed improved appetite (P<0.05). The numbers of patients with diarrhea, mucus/bloody stools, perianal disease, and oral ulcers decreased from 19, 9, 11, and 21 before treatment to 7, 1, 0, and 10 after treatment, respectively (P<0.05). Laboratory findings showed that absolute neutrophil counts increased, while platelet counts, lactate, and uric acid levels decreased significantly after empagliflozin treatment (P<0.05). Adverse reactions occurred in 7 patients (28%) during empagliflozin treatment. Two cases occurred in the treatment initiation phase, presenting as hypotension or profuse sweating with dehydration, along with urinary tract infections (UTIs); empagliflozin was discontinued in both cases. During the maintenance phase, 3 cases of UTIs and 2 cases of hypoglycemia (one with profuse sweating) were reported.
CONCLUSIONS
Empagliflozin therapy can increase neutrophil counts, reduce the incidence of infections and oral ulcers, alleviate diarrhea and abdominal pain, improve appetite, and ameliorate platelet count, lactate, and uric acid levels in patients with GSD-associated IBD, demonstrating significant clinical benefit. UTIs, hypoglycemia, hypotension, profuse sweating, and dehydration may be potential adverse reactions associated with empagliflozin therapy.
Humans
;
Benzhydryl Compounds/adverse effects*
;
Male
;
Female
;
Glucosides/adverse effects*
;
Inflammatory Bowel Diseases/etiology*
;
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Adolescent
;
Glycogen Storage Disease/drug therapy*
;
Infant
4.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
6.The mechanism of GSK-3β/CREB signaling pathway regulating macrophage pyroptosis and participating in the occurrence and development of diabetic foot ulcer.
Hao HE ; Yanli YANG ; Li ZHANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1083-1088
Objective To investigate the role and possible mechanism of glycogen synthase kinase-3 beta (GSK-3β)/cAMP response element binding protein (CREB) signaling pathway in regulating macrophage pyroptosis in the pathogenesis and development of diabetic foot ulcer (DFU). Methods Thirty rats were randomly divided into control group, DFU group and GSK-3β inhibited group, with 10 rats in each group. Fasting blood glucose (FBG) was detected by dynamic blood glucose detector. The wound healing of each group was observed and recorded. The histopathologic changes of the wound were detected by HE staining. The level of wound fibrosis was detected by Masson staining. The protein levels of GSK-3β, CREB, gasdermin E (GSDME) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in wound tissue were detected by Western blotting. The co-expression of F4/80, GSDME and NLRP3 in wound tissue was detected by immunofluorescence staining. The serum levels of IL-1β and IL-18 were detected by ELISA. Results Compared with the control group, FBG in DFU group was increased. Compared with DFU group, FBG in GSK-3β inhibition group was decreased. The wound healing rate of rats in the inhibited GSK-3β group was higher than that in the DFU group from day 3 to day 14, and the difference was significant on day 14. Therefore, samples from day 14 were used in the follow-up experiment. Compared with the control group, the wound tissue of rats in DFU group was significantly damaged with collagen deposition defect, and the expressions of GSK-3β, CREB and apoptosis-related proteins GSDME and NLRP3 were increased, and the co-expressions of F4/80 and GSDME, F4/80 and NLRP3 were increased. Serum levels of IL-1β and IL-18 were increased. Compared with DFU group, most of the wound tissues of rats in GSK-3β group were healed. Collagen deposition at the fracture was increased. The expressions of GSK-3β, CREB and GSDME, NLRP3 were decreased. The expression levels of F4/80 and GSDME were reduced, along with a decrease in the co-expression of F4/80 and NLRP3. Additionally, there was a reduction in serum concentrations of IL-1β and IL-18. Conclusion GSK-3β/CREB signaling pathway and macrophage pyroptosis are significantly up-regulated in DFU rats. Inhibition of this pathway can promote DFU healing and down-regulate macrophage pyroptosis level.
Animals
;
Pyroptosis
;
Diabetic Foot/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Signal Transduction
;
Male
;
Rats
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Macrophages/metabolism*
;
Rats, Sprague-Dawley
;
Wound Healing
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-1beta/metabolism*
7.Butyrate acts as a G-protein-coupled receptor ligand that prevents high glucose-induced amyloidogenesis in N2a cells through the protein kinase B/glycogen synthase kinase-3β pathway.
Yujie XU ; Shufang SHAN ; Xiaoyu WANG ; Lingli LI ; Liang MA ; Jingyuan XIONG ; Ping FU ; Guo CHENG
Chinese Medical Journal 2023;136(19):2368-2370
8.SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression.
Zhihao DU ; Pan WEI ; Nan JIANG ; Liling WU ; Chong DING ; Guangyan YU
Chinese Medical Journal 2023;136(21):2596-2608
BACKGROUND:
Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS.
METHODS:
SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement.
RESULTS:
SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression.
CONCLUSION
Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.
Mice
;
Animals
;
Humans
;
Sjogren's Syndrome/therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Tight Junctions/metabolism*
;
Glycogen Synthase Kinase 3 beta
;
Mice, Inbred NOD
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Exosomes/metabolism*
;
Xerostomia
;
Phosphatidylinositol 3-Kinase
;
MicroRNAs/genetics*
9.Effect of acetylalkannin from Arnebia euchroma on proliferation, migration, and invasion of human melanoma A375 cells.
Ying-Ying KANG ; Qian QIAN ; Ya YANG ; Ying YANG ; Fang XU ; Min LI ; Jian-Guang LI
China Journal of Chinese Materia Medica 2023;48(18):5049-5055
This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 μmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/β-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3β(GSK-3β), phosphorylated GSK-3β(p-GSK-3β), β-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, β-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3β, β-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3β protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, β-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/β-catenin signaling pathway.
Humans
;
Matrix Metalloproteinase 2/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
beta Catenin/metabolism*
;
Vimentin/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Cell Line, Tumor
;
Wnt Signaling Pathway
;
Cadherins/genetics*
;
Melanoma/genetics*
;
Cyclin D/metabolism*
;
Cell Proliferation
;
Boraginaceae/genetics*
;
RNA, Messenger
;
Cell Movement
10.Mechanism of Gegen Qinlian Decoction in improving glucose metabolism in vitro and in vivo by alleviating hepatic endoplasmic reticulum stress.
Yue JIANG ; Li-Ke YAN ; Ying WANG ; Jun-Feng DING ; Zhong-Hua XU ; Can CUI ; Jun TU
China Journal of Chinese Materia Medica 2023;48(20):5565-5575
This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt
;
Endoplasmic Reticulum Chaperone BiP
;
Caspase 3
;
Caspase 9
;
Diabetes Mellitus, Experimental
;
Caspase 12
;
Calcium/pharmacology*
;
Molecular Docking Simulation
;
Endoplasmic Reticulum Stress
;
Protein Serine-Threonine Kinases/genetics*
;
Liver
;
Apoptosis
;
Insulin
;
Glucose
;
Glycogen/pharmacology*
;
RNA, Messenger

Result Analysis
Print
Save
E-mail