1.Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation.
Yifan ZHU ; Xinyi HUANG ; Tao HAN ; Jiteng WANG ; Xiaoping YU ; Zheng MA
Journal of Zhejiang University. Science. B 2025;26(8):805-812
Soybean meal (SBM) prepared by soybean crushing is the most popular protein source in the poultry and livestock industries (Cai et al., 2015) due to its economic manufacture, high protein content, and good nutritional value. Despite these benefits, SBM contains various antigen proteins such as glycinin and β-conglycinin, which account for approximately 70% of the total proteins of the SBM and reduce digestibility and damage intestinal function (Peng et al., 2018). Treating SBM with proteases (neutrase, alcalase, and trypsin) or fermentation can eliminate these antigen proteins (Contesini et al., 2018). Because of its safety and rapid growth cycle, Bacillus strains are considered ideal for the fermentation industry (Yao et al., 2021). SBM fermented by Bacillus yields products with high nutritional value and low levels of antinutritional factors (ANFs), stimulating research in this area (Yuan et al., 2017). Kumari et al. (2023) demonstrated that fermentation with Bacillus species effectively degrades antigen proteins and increases crude protein content. The degradation of antigen proteins relies on protease hydrolysis. Low protease production is the major obstacle hindering the widespread use of microbial fermentation techniques.
Bacillus amyloliquefaciens/metabolism*
;
Fermentation
;
Glycine max/metabolism*
;
Soybean Proteins/metabolism*
;
Peptide Hydrolases/metabolism*
;
Ribosomes/metabolism*
;
Globulins
;
Antigens, Plant
;
Seed Storage Proteins
2.Mining, characterization, and expression of a fructan sucrase for efficient conversion of soybean oligosaccharides.
Bin WANG ; Jingru YING ; Yuanyuan CHEN ; Zemin FANG ; Yazhong XIAO ; Wei FANG ; Dongbang YAO
Chinese Journal of Biotechnology 2025;41(1):333-351
The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme. Finally, recombinant extracellular expression of this gene was carried out in Bacillus subtilis. The results showed that a novel fructan sucrase, BhLS 39, was mined from Bacillus halotolerans. With sucrose and raffinose as substrates, BhLS 39 showed the optimal temperatures of 50 ℃ and 55 ℃, optimal pH 5.5 for both, and Kcat/Km ratio of 3.4 and 6.6 L/(mmol·s), respectively. When 400 g/L raffinose was used as the substrate, the melibiose conversion rate was 84.6% after 30 min treatment with 5 U BhLS 39. Furthermore, BhLS 39 catalyzed the conversion of sucrose to produce levan-type-fructooligosaccharide and levan. Then, the recombinant extracellular expression of BhLS 39 in B. subtilis was achieved. The co-expression of the intracellular chaperone DnaK and the extracellular chaperone PrsA increased the extracellular activity of the recombinant BhLS 39 by 5.2 folds to 17 U/mL compared with that of the control strain. BhLS 39 obtained in this study is conducive to improving the quality and economic benefits of soybean oligosaccharides. At the same time, the strategy used here to enhance the extracellular expression of BhLS 39 will also promote the efficient recombinant expression of other proteins in B. subtilis.
Oligosaccharides/metabolism*
;
Glycine max/metabolism*
;
Bacillus subtilis/metabolism*
;
Sucrase/biosynthesis*
;
Raffinose/metabolism*
;
Fructans/metabolism*
;
Sucrose/metabolism*
;
Bacillus/genetics*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/biosynthesis*
3.Cloning and functional analysis of GmMAX2b involved in disease resistance.
Jiahui FU ; Lin ZUO ; Weiqun HUANG ; Song SUN ; Liangyu GUO ; Min HU ; Peilan LU ; Shanshan LIN ; Kangjing LIANG ; Xinli SUN ; Qi JIA
Chinese Journal of Biotechnology 2025;41(7):2803-2817
The plant F-box protein more axillary growth 2 (MAX2) is a key factor in the signal transduction of strigolactones (SLs) and karrinkins (KARs). As the main component of the SKP1-CUL1-FBX (SCF) complex ubiquitin ligase E3, MAX2 is responsible for specifically recognizing the target proteins, suppressor of MAX2 1/SMAX1-like proteins (SMAX1/SMXLs), which would be degraded after ubiquitination. It can thereby regulate plant morphogenesis and stress responses. There exist homologous genes of MAX2 in the important grain and oil crop soybean (Glycine max). However, its role in plant defense responses has not been investigated yet. Here, GmMAX2b, a homologous gene of MAX2, was successfully cloned from stressed soybean. Bioinformatics analysis revealed that there were two MAX2 homologous genes, GmMAX2a and GmMAX2b, with a similarity of 96.2% in soybean. Their F-box regions were highly conserved. The sequence alignment and cluster analysis of plant MAX2 homologous proteins basically reflected the evolutionary relationship of plants and also suggested that soybean MAX2 might be a multifunctional protein. Expression analysis showed that plant pathogen infection and salicylic acid treatment induced the expression of GmMAX2b in soybean, which is consistent with that of MAX2 in Arabidopsis. Ectopic expression of GmMAX2b compensated for the susceptibility of Arabidopsis max2-2 mutant to pathogen, indicating that GmMAX2b positively regulated plant disease resistance. In addition, yeast two hybrid technology was used to explore the potential target proteins of GmMAX2b. The results showed that GmMAX2b interacted with SMXL6 and weakly interacted with SMXL2. In summary, GmMAX2b is a positive regulator in plant defense responses, and its expression is induced by pathogen infection and salicylic acid treatment. GmMAX2b might exert its effect through interaction with SMXL6 and SMXL2. This study expands the theoretical exploration of soybean disease resistant F-box and provides a scientific basis for future soybean disease resistant breeding.
Glycine max/metabolism*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plant Proteins/genetics*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
F-Box Proteins/genetics*
;
Arabidopsis/genetics*
;
Phylogeny
4.Silencing GmWRKY33B genes leads to reduced disease resistance in soybean.
Chenli ZHONG ; Wenxu WANG ; Lina LIAO ; Jianzhong LIU
Chinese Journal of Biotechnology 2024;40(1):163-176
The WRKYs are a group of plant-specific transcription factors that play important roles in defense responses. In this study, we silenced 2 GmWRKY33B homologous genes using a bean pod mosaic virus (BPMV) vector carrying a single fragment from the conserved region of the GmWRKY33B genes. Silencing GmWRKY33B did not result in morphological changes. However, significantly reduced resistances to Pseudomonas syringae pv. glycinea (Psg) and soybean mosaic virus (SMV) were observed in the GmWRKY33B-silenced plants, indicating a positive role of the GmWRKY33B genes in disease resistance. Kinase assay showed that silencing the GmWRKY33B genes significantly reduced the activation of GmMPK6, but not GmMPK3, in response to flg22 treatment. Reverse transcriptase PCR (RT-PCR) analysis of the genes encoding prenyltransferases (PTs), which are the key enzymes in the biosynthesis of glyceollin, showed that the Psg-induced expression of these genes was significantly reduced in the GmWRKY33B-silenced plants compared with the BPMV-0 empty vector plants, which correlated with the presence of the W-boxes in the promoter regions of these genes. Taken together, our results suggest that GmWRKY33Bs are involved in soybean immunity through regulating the activation of the kinase activity of GmMPK6 as well as through regulating the expression of the key genes encoding the biosynthesis of glyceollins.
Glycine max/genetics*
;
Disease Resistance/genetics*
;
Biological Assay
;
Dimethylallyltranstransferase
;
Gene Silencing
5.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
6.Silencing GmATG10 results in activation of immune responses in soybean.
Tao ZHOU ; Meiyan YE ; Tianyao LIU ; Hujiao LAN ; Said Masoud HASHIMI ; Wei GUO ; Jianzhong LIU
Chinese Journal of Biotechnology 2023;39(2):586-602
Autophagy is a highly conserved mechanism for material degradation and recycling in eukaryote cells, and plays important roles in growth, development, stress tolerance and immune responses. ATG10 plays a key role in autophagosome formation. To understand the function of ATG10 in soybean, two homologous GmATG10 genes, namely GmATG10a and GmATG10b, were silenced simultaneously by bean pod mottle virus (BPMV) induced gene silencing. The carbon starvation induced by dark treatment and Western blotting analysis of GmATG8 accumulation level indicated that concurrent silencing GmATG10a/10b resulted in the impairment of autophagy in soybean; disease resistance and kinase assays demonstrated that GmATG10a/10b participated in the immune responses by negatively regulating the activation of GmMPK3/6, indicating that GmATG10a/10b plays a negative regulatory role in immune response in soybean.
Soybeans/genetics*
;
Immunity
7.Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction.
Shai LI ; Li LI ; Si Min MIN ; Sai Sai LIU ; Zhi Wen QIN ; Zhi Shang XIONG ; Jian Guo XU ; Bo Wen WANG ; Du Shan DING ; Shi Di ZHAO
Journal of Southern Medical University 2023;43(2):323-330
OBJECTIVE:
To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.
METHODS:
A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.
RESULTS:
The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).
CONCLUSION
SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 9/metabolism*
;
Soybeans/metabolism*
;
Occludin/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ferroptosis
;
Blood-Brain Barrier/ultrastructure*
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Isoflavones/therapeutic use*
;
Infarction, Middle Cerebral Artery
8.Soybean GmGolS2-2 improves drought resistance of transgenic tobacco.
Haiwei YU ; Shuang QIU ; Jun ZHANG ; Shanshan LI ; Tianguo SUN ; Tianyi MA ; Yan ZHAO ; Xu ZHAO ; Ying ZHAI
Chinese Journal of Biotechnology 2023;39(7):2762-2771
Galactinol synthase (GolS) genes play important roles in plant response to abiotic stress. In this research, the plant expression vector of soybean GmGolS2-2 gene was constructed and transformed into tobacco to study the drought tolerance of transgenic tobacco. A GmGolS2-2 gene with 975 bp coding sequence was cloned from soybean leaves by reverse transcription-polymerase chain reaction (RT-PCR). GmGolS2-2 was linked to the plant expression vector pRI101 by restriction enzyme sites Nde Ⅰ and EcoR Ⅰ, and transformed into tobacco by leaf disc method. Genomic DNA PCR and real-time PCR showed that three GmGolS2-2 transgenic tobacco plants were obtained. The growth status of GmGolS2-2 transgenic tobacco under drought stress was better than that of wild-type tobacco. After drought stress treatment, the electrolyte leakage and malondialdehyde content of transgenic tobacco were lower than those of wild-type tobacco, but the proline content and soluble sugar content were higher than those of wild-type tobacco. The results of real-time PCR showed that the heterologous expression of GmGolS2-2 increased the expression of stress-related genes NtERD10C and NtAQP1 in transgenic tobacco. The above results indicated that GmGolS2-2 improved drought resistance of transgenic tobacco.
Drought Resistance
;
Tobacco/genetics*
;
Soybeans/genetics*
;
Plant Proteins/metabolism*
;
Plants, Genetically Modified/genetics*
;
Stress, Physiological/genetics*
;
Droughts
;
Gene Expression Regulation, Plant
9.Identification of soybean GolS gene family and analysis of expression patterns under salt and drought stresses.
Dan LIU ; Keai WANG ; Peng NI ; Qiuyan WANG ; Kang ZHU ; Wenliang WEI
Chinese Journal of Biotechnology 2022;38(10):3757-3772
Galactinol synthase (GolS) is a key enzyme in the biosynthetic pathway of raffinose family oligosaccharides (RFOs) and plays an important role in plant responses to abiotic stresses. However, the molecular characteristics of the GolS family members in soybean was not well-known. In this study, six members of GmGolS gene family were genome-widely identified, and their physicochemical properties, chromosomal localization, evolutionary relationship, gene structure, conserved motifs, secondary structure, tertiary structure, tissue-specific expression patterns and the expression levels under salt and drought stresses were analyzed. The results showed that six soybean GolS genes were unevenly distributed on four chromosomes, the range of the isoelectric points of six GmGolS proteins was 5.45-6.08, the molecular weight range was 37 567.07-38 817.59 Da, and the number of amino acids was 324-339 aa. The results of subcellular localization showed that 4 proteins were located in the chloroplast, and 2 proteins in the cytoplasm. Phylogenetic tree analysis showed that the members of the soybean GolS gene family were closely adjacent to each other, and were evolutionarily conservative. Six gene members contain 3 or 4 exons. Prediction of secondary and tertiary structures showed that the spatial structure of proteins of all family members was mainly composed of α-helix and random coil structure, with less β-turn and extended chain structure. Tissue-specific expression analysis showed that six GmGolS members expressed to variable degrees in seeds, roots, root hairs, flowers, stems, pods, nodules and leaves. Expression analysis based on qRT-PCR showed that all GmGolS genes showed different degrees of up-regulated expression under salt and drought treatment, indicating that these genes may be related to the response of plants to salt-tolerance and drought-resistance. These results may facilitate subsequent functional analysis of soybean GolS genes.
Droughts
;
Soybeans/genetics*
;
Phylogeny
;
Plant Proteins/metabolism*
;
Stress, Physiological/genetics*
;
Plants/metabolism*
;
Gene Expression Regulation, Plant
10.Literature-based analysis of conversion of components in fermentation process of Sojae Semen Praeparatum.
Wang-Min LIN ; Qian-Qian WENG ; Ai-Ping DENG ; Jia-Chen ZHAO ; Yue ZHANG ; Shui-Li ZHANG ; Bing YU ; Zhi-Lai ZHAN ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2021;46(9):2119-2132
Based on the systematic retrieval and the reported components of Sojae Semen Nigrum and Sojae Semen Praeparatum, this study conducted in-depth analysis of conversion of components in the fermentation process, and discussed types and possible mec-hanisms of conversion of chemical components, so as to provide the basis for studying technology, medicinal ingredients and quality standards. According to the analysis, there is a certain degree of conversion of nutrients(like protein, sugar, lipid), bioactive substances(like isoflavones, saponins, γ-aminobutyric acid) and other substances(like nucleosides, melanoids, biamines, etc) in the process of fermentation.
Chromatography, High Pressure Liquid
;
Fermentation
;
Isoflavones/analysis*
;
Semen/chemistry*
;
Soybeans

Result Analysis
Print
Save
E-mail