1.Long-term safety and effectiveness of roxadustat in Chinese patients with chronic kidney disease-associated anemia: The ROXSTAR registry.
Xiaoying DU ; Yaomin WANG ; Haifeng YU ; Jurong YANG ; Weiming HE ; Zunsong WANG ; Dongwen ZHENG ; Xiaowei LI ; Shuijuan SHEN ; Dong SUN ; Weimin YU ; Detian LI ; Changyun QIAN ; Yiqing WU ; Shuting PAN ; Jianghua CHEN
Chinese Medical Journal 2025;138(12):1465-1476
BACKGROUND:
Chronic kidney disease (CKD)-associated anemia (CKD-anemia) is associated with poor survival, and hemoglobin targets are often not achieved with current therapies. Phase 3 trials have demonstrated the treatment efficacy of roxadustat for CKD-anemia. This phase 4 study aims to evaluate the long-term (52-week) safety and effectiveness of roxadustat in a broad real-world patient population with CKD-anemia with and without dialysis in China.
METHODS:
This Phase 4 multicenter, open-label, prospective study, conducted from 24 November 2020 to 11 November 2022, evaluated the long-term safety and effectiveness of roxadustat for CKD-anemia in China. Patients aged ≥18 years with CKD-anemia with or without dialysis were included. The initial oral dose was 70-120 mg (weight-based followed by dose adjustment) over 52 weeks. The primary endpoint was safety based on adverse events (AEs). The secondary endpoints were hemoglobin changes from baseline and the proportion of patients who achieved mean hemoglobin ≥100 g/L. Effectiveness evaluable populations 1 (EE1) and EE2 included roxadustat-naïve and previously roxadustat-treated patients, respectively. The safety analysis set (SAF) included all patients who received ≥1 occasion.
RESULTS:
The EE1, EE2, and SAF populations included 1804, 193, and 2021 patients, respectively. In the SAF, the mean age was 50 ± 14 years, and 1087 patients (53.8%) were male. Mean baseline hemoglobin was 96.9 ± 14.0 g/L in EE1 and 100.3 ± 12.9 g/L in EE2. In EE1, the mean (95% confidence interval) hemoglobin changes from baseline over weeks 24-36 and 36-52 were 14.2 (13.5-14.9) g/L and 14.3 (13.5-15.0) g/L, respectively. Over weeks 24-36 and 36-52, 83.3% and 86.1% of patients in EE1 and 82.7% and 84.7% in EE2 achieved mean hemoglobin ≥100 g/L, respectively. In the SAF, 1643 (81.3%) patients experienced treatment-emergent AEs (TEAEs). Overall, 219 (10.8%) patients experienced drug-related TEAEs. Thirty-eight (1.9%) patients died of TEAEs (unrelated to the study drug). Vascular access thrombosis was uncommon.
CONCLUSIONS:
Roxadustat (52 weeks) increased hemoglobin and maintained the treatment target in Chinese patients with CKD-anemia with acceptable safety, supporting its use in real-world settings.
REGISTRATION
Chinese Clinical Trial Registry ( www.chictr.org.cn ) ChiCTR2100046322; CDE ( www.chinadrugtrials.org.cn ) CTR20201568.
Humans
;
Male
;
Female
;
Anemia/etiology*
;
Middle Aged
;
Renal Insufficiency, Chronic/complications*
;
Glycine/adverse effects*
;
Isoquinolines/adverse effects*
;
Aged
;
Prospective Studies
;
Adult
;
Hemoglobins/metabolism*
;
Treatment Outcome
;
China
;
Registries
;
East Asian People
2.Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers.
Georgi Yu LAPTEV ; Daria G TIURINA ; Elena A YILDIRIM ; Elena P GORFUNKEL ; Larisa A ILINA ; Valentina A FILIPPOVA ; Andrei V DUBROVIN ; Alisa S DUBROVINA ; Evgeni A BRAZHNIK ; Natalia I NOVIKOVA ; Veronika K MELIKIDI ; Kseniya A SOKOLOVA ; Ekaterina S PONOMAREVA ; Vasiliy A ZAIKIN ; Darren K GRIFFIN ; Michael N ROMANOV
Journal of Zhejiang University. Science. B 2025;26(2):185-199
Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic (ANT) application and affect gene expression. In this study, we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate (GLY), two ANTs, and one anticoccidial drug (AD). A total of 260 Ross 308 broilers aged 1-40 d were divided into the following four groups of 65 birds each: control group, which was fed the main diet (MD), and three experimental groups, which were fed MD supplemented with GLY, GLY+ANTs (enrofloxacin and colistin methanesulfonate), and GLY+AD (ammonium maduramicin), respectively. The results showed that the addition of GLY, GLY+ANTs, and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance. In particular, genes related to inflammation and apoptosis (interleukin 6 (IL6), prostaglandin-endoperoxide synthase 2 (PTGS2), and caspase 6 (CASP6)) were downregulated by up to 99.1%, and those related to antioxidant protection (catalase (CAT), superoxide dismutase 1 (SOD1) and peroxiredoxin 6 (PRDX6)) by up to 98.6%, compared to controls. There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups, and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood. The changes revealed in gene expression and blood indices in response to GLY, ANTs, and AD provide insights into the possible mechanisms of action of these agents at the molecular level. Specifically, these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY, GLY+ANTs, and GLY+AD in broilers.
Animals
;
Glyphosate
;
Glycine/administration & dosage*
;
Chickens/blood*
;
Pancreas/metabolism*
;
Anti-Bacterial Agents/pharmacology*
;
Animal Feed
;
Gene Expression/drug effects*
;
Herbicides
3.Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation.
Yifan ZHU ; Xinyi HUANG ; Tao HAN ; Jiteng WANG ; Xiaoping YU ; Zheng MA
Journal of Zhejiang University. Science. B 2025;26(8):805-812
Soybean meal (SBM) prepared by soybean crushing is the most popular protein source in the poultry and livestock industries (Cai et al., 2015) due to its economic manufacture, high protein content, and good nutritional value. Despite these benefits, SBM contains various antigen proteins such as glycinin and β-conglycinin, which account for approximately 70% of the total proteins of the SBM and reduce digestibility and damage intestinal function (Peng et al., 2018). Treating SBM with proteases (neutrase, alcalase, and trypsin) or fermentation can eliminate these antigen proteins (Contesini et al., 2018). Because of its safety and rapid growth cycle, Bacillus strains are considered ideal for the fermentation industry (Yao et al., 2021). SBM fermented by Bacillus yields products with high nutritional value and low levels of antinutritional factors (ANFs), stimulating research in this area (Yuan et al., 2017). Kumari et al. (2023) demonstrated that fermentation with Bacillus species effectively degrades antigen proteins and increases crude protein content. The degradation of antigen proteins relies on protease hydrolysis. Low protease production is the major obstacle hindering the widespread use of microbial fermentation techniques.
Bacillus amyloliquefaciens/metabolism*
;
Fermentation
;
Glycine max/metabolism*
;
Soybean Proteins/metabolism*
;
Peptide Hydrolases/metabolism*
;
Ribosomes/metabolism*
;
Globulins
;
Antigens, Plant
;
Seed Storage Proteins
4.Distribution characteristics of polymorphonuclear neutrophil pulmonary infiltration and the mechanism of neutrophil elastase in promoting lung injury in the early stages of severe burns.
Xin ZHANG ; Chunfang ZHENG ; Jiahui CHEN ; Zaiwen GUO ; Linbin LI ; Jiamin HUANG ; Bingwei SUN
Chinese Critical Care Medicine 2025;37(5):431-437
OBJECTIVE:
To investigate the distribution characteristics of polymorphonuclear neutrophil (PMN) in the lungs during the early stage of severe burns and the mechanism of neutrophil elastase (NE) promoting lung injury.
METHODS:
6-8-week-old male C57BL/6J mice were selected for the experiments. A 30% total body surface area (TBSA) III degree burn mouse model was established (severe burn group); the Sham-injury group was treated with 37 centigrade water. In the sodium sivelestat intervention group (SV intervention group), NE competitive inhibitor, sivelestat, 100 mg/kg, was injected via tail vein immediately after injury, while other groups received an equal volume of saline. Ten mice were harvested from each group to observe survival for 72 hours. Respiratory function tests were tested at 0 (immediate), 3, 6, 12, and 24 hours after molding. hematoxylin-eosin (HE) and immunohistochemical staining were used to observe lung tissue structure, inflammatory changes and PMN infiltration. The PMN absolute count in mice lung tissue was detected buy flow cytometry. At 6, 12, and 24 hours after molding, PMN counts and the concentration of NE [enzyme linked immunosorbent assay (ELISA)] in peripheral blood plasma, lung tissue, and bronchoalveolar lavage fluid (BALF) were detected.
RESULTS:
(1) HE staining results showed that compared with the Sham-injury group, the lungs of mice in the severe burn group showed inflammatory changes and PMN infiltration, with more significant changes at 6 hours. Immunohistochemistry results also confirmed that the expression of NE protein released from PMN significantly increased after 6 hours of severe burn injury [(3.79±0.62)% vs. (0.18±0.05)%, t = 11.56, P < 0.01]. (2) Compared with the Sham-injury group, the number of PMN and the concentration of NE in the peripheral blood and lung tissues in the severe burn group were significantly increased (F values were 13.709, 55.350 and 29.890, 13.286, respectively, all P < 0.01), peaking at 6 hours [plasma PMN count (×109/L): 2.92±1.01 vs. 0.92±0.29, lung tissue PMN absolute count (cells): 48 788.03±11 833.91 vs. 1 516.72±415.35, plasma NE (ng/L): 24 522.71±3 842.92 vs. 7 009.34±4 067.86, lung tissue NE (ng/L): 262 189.04±9 695.13 vs. 65 026.03± 16 016.31, all P < 0.01]. The number of PMN in the lung of severely burned mice was highly correlated with NE concentration (r = 0.892, P < 0.001). There was no significantly difference in the PMN absolute count in the BALF of mice between the Sham-injury group and severe burn group (F = 1.403, P > 0.05). The Sham-injury group and severe burn group contained a small amount of NE in the BALF, and the concentration of NE in the BALF of the severely burned 6 hours and 12 hours groups were significantly higher than those of the Sham-injury group (ng/L: 328.58±158.10, 415.30±240.89 vs. 61.95±15.80, both P < 0.05). (3) Kaplan-Meier survival curve showed that the 72-hour survival rate of mice in the SV intervention group was significantly higher than that in the severe burn group (100% vs. 10%, Log-Rank test: χ2 = 19.12, P < 0.001). (4) Compared with the Sham-injury group, all lung function indices of the severe burn group decreased significantly. All lung function indices of SV intervention group improved gradually over time, which were significantly better than those of the severe burn group. (5) Compared with the Sham-injury group, the PMN absolute count in lung tissue and the concentration of NE in plasma and lung tissue were significantly higher in the SV intervention group (F values were 46.709, 3.535, 32.701, respectively, all P < 0.05), with a peak at 6 hours. Compared with the severe burn group, the SV intervention group had a higher PMN absolute count in lung tissue (cells: 8 870.80±7 013.89 vs. 25 974.92±22 240.8, P < 0.05), and higher plasma and lung tissue NE concentrations (ng/L: 14 955.94±3 944.41 vs. 21 972.75±4 573.05, 81 956.87±38 658.35 vs. 168 182.30±83 513.91, both P < 0.01) were significantly decreased.
CONCLUSIONS
In the early stage of severe burns, there is a significant infiltration of PMN into the lungs. The NE promotes lung injury in the early stage of severe burn, and improve lung injury by inhibiting the action of NE.
Animals
;
Burns/metabolism*
;
Leukocyte Elastase/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Mice
;
Neutrophils/metabolism*
;
Lung/metabolism*
;
Disease Models, Animal
;
Neutrophil Infiltration
;
Lung Injury/metabolism*
;
Glycine/analogs & derivatives*
;
Sulfonamides
5.Mining, characterization, and expression of a fructan sucrase for efficient conversion of soybean oligosaccharides.
Bin WANG ; Jingru YING ; Yuanyuan CHEN ; Zemin FANG ; Yazhong XIAO ; Wei FANG ; Dongbang YAO
Chinese Journal of Biotechnology 2025;41(1):333-351
The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme. Finally, recombinant extracellular expression of this gene was carried out in Bacillus subtilis. The results showed that a novel fructan sucrase, BhLS 39, was mined from Bacillus halotolerans. With sucrose and raffinose as substrates, BhLS 39 showed the optimal temperatures of 50 ℃ and 55 ℃, optimal pH 5.5 for both, and Kcat/Km ratio of 3.4 and 6.6 L/(mmol·s), respectively. When 400 g/L raffinose was used as the substrate, the melibiose conversion rate was 84.6% after 30 min treatment with 5 U BhLS 39. Furthermore, BhLS 39 catalyzed the conversion of sucrose to produce levan-type-fructooligosaccharide and levan. Then, the recombinant extracellular expression of BhLS 39 in B. subtilis was achieved. The co-expression of the intracellular chaperone DnaK and the extracellular chaperone PrsA increased the extracellular activity of the recombinant BhLS 39 by 5.2 folds to 17 U/mL compared with that of the control strain. BhLS 39 obtained in this study is conducive to improving the quality and economic benefits of soybean oligosaccharides. At the same time, the strategy used here to enhance the extracellular expression of BhLS 39 will also promote the efficient recombinant expression of other proteins in B. subtilis.
Oligosaccharides/metabolism*
;
Glycine max/metabolism*
;
Bacillus subtilis/metabolism*
;
Sucrase/biosynthesis*
;
Raffinose/metabolism*
;
Fructans/metabolism*
;
Sucrose/metabolism*
;
Bacillus/genetics*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/biosynthesis*
6.Effects of Gly mutations N-terminal to the integrin-binding sequence on the structure and function of recombinant collagen.
Fei LI ; Yuxi HOU ; Ben RAO ; Xiaoyan LIU ; Yaping WANG ; Yimin QIU
Chinese Journal of Biotechnology 2025;41(4):1573-1587
Collagen, a vital matrix protein for various tissue and functions in animals, is widely applied in biomaterials. In type Ⅰ collagen, missense mutations of glycine (Gly) in the Gly-Xaa-Yaa triplet of the triple helix are a major cause of osteogenesis imperfecta (OI). Clinical manifestations exhibit marked heterogeneity, spanning a broad disease spectrum from mild skeletal fragility (Type Ⅰ) to severe limb deformities (Type Ⅲ) and perinatal lethal forms (Type Ⅱ). This study utilized recombinant collagen as a model to further elucidate whether Gly→Ala/Val mutations at the N-terminus of the integrin-binding sequence GFPGER affect collagen structure and function, and to explore the underlying mechanisms by which missense mutations impact the biological function of collagen. By introducing Ala and Val substitutions at seven Gly positions N-terminal to the GFPGER sequence, we systematically assessed the effects of these amino acid replacements on the triple-helical structure, thermal stability, integrin-binding ability, and cell adhesion of recombinant collagen. All constructs formed a stable triple-helix structure, with slightly compromised thermal stability. Gly→Val substitutions increased the susceptibility of recombinant collagen to trypsin, which suggested local conformational perturbations in the triple helix. In addition, Gly→Val substitutions significantly reduced the integrin-binding affinity and decreased HT1080 cell adhesion, with the effects stronger than Gly→Ala substitutions. Compared with Gly→Ala substitutions, substitution of Gly with the larger residue Val had enhanced negative effects on the structure and function of recombinant collagen. These findings provide new insights into the molecular mechanisms of osteogenesis imperfecta and offer theoretical references and experimental foundations for the design of collagen sequences and the development of collagen-based biomaterials.
Recombinant Proteins/biosynthesis*
;
Glycine/genetics*
;
Humans
;
Osteogenesis Imperfecta/genetics*
;
Integrins/metabolism*
;
Collagen/metabolism*
;
Collagen Type I/metabolism*
;
Amino Acid Substitution
;
Mutation
;
Mutation, Missense
7.Cloning and functional analysis of GmMAX2b involved in disease resistance.
Jiahui FU ; Lin ZUO ; Weiqun HUANG ; Song SUN ; Liangyu GUO ; Min HU ; Peilan LU ; Shanshan LIN ; Kangjing LIANG ; Xinli SUN ; Qi JIA
Chinese Journal of Biotechnology 2025;41(7):2803-2817
The plant F-box protein more axillary growth 2 (MAX2) is a key factor in the signal transduction of strigolactones (SLs) and karrinkins (KARs). As the main component of the SKP1-CUL1-FBX (SCF) complex ubiquitin ligase E3, MAX2 is responsible for specifically recognizing the target proteins, suppressor of MAX2 1/SMAX1-like proteins (SMAX1/SMXLs), which would be degraded after ubiquitination. It can thereby regulate plant morphogenesis and stress responses. There exist homologous genes of MAX2 in the important grain and oil crop soybean (Glycine max). However, its role in plant defense responses has not been investigated yet. Here, GmMAX2b, a homologous gene of MAX2, was successfully cloned from stressed soybean. Bioinformatics analysis revealed that there were two MAX2 homologous genes, GmMAX2a and GmMAX2b, with a similarity of 96.2% in soybean. Their F-box regions were highly conserved. The sequence alignment and cluster analysis of plant MAX2 homologous proteins basically reflected the evolutionary relationship of plants and also suggested that soybean MAX2 might be a multifunctional protein. Expression analysis showed that plant pathogen infection and salicylic acid treatment induced the expression of GmMAX2b in soybean, which is consistent with that of MAX2 in Arabidopsis. Ectopic expression of GmMAX2b compensated for the susceptibility of Arabidopsis max2-2 mutant to pathogen, indicating that GmMAX2b positively regulated plant disease resistance. In addition, yeast two hybrid technology was used to explore the potential target proteins of GmMAX2b. The results showed that GmMAX2b interacted with SMXL6 and weakly interacted with SMXL2. In summary, GmMAX2b is a positive regulator in plant defense responses, and its expression is induced by pathogen infection and salicylic acid treatment. GmMAX2b might exert its effect through interaction with SMXL6 and SMXL2. This study expands the theoretical exploration of soybean disease resistant F-box and provides a scientific basis for future soybean disease resistant breeding.
Glycine max/metabolism*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plant Proteins/genetics*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
F-Box Proteins/genetics*
;
Arabidopsis/genetics*
;
Phylogeny
8.Advances in inhibitory ion channel glycine receptors.
Xu-Ke PANG ; Si CHEN ; Xiang-Xian MA ; Yi-Nuo XU ; Wei-Jie BAI ; Chong-Lei FU ; Gui-Chang ZOU
Acta Physiologica Sinica 2024;76(6):908-916
Glycine receptors (GlyRs) belong to the ligand-gated ion channel receptor superfamily and are widely distributed throughout the central nervous system. GlyRs are essential for maintaining visual, auditory, sensory and motor functions, and abnormalities in its structure and function can lead to various neurological disorders. This review aims to provide an extensive analysis of the structure, function and regulatory mechanisms of GlyRs, and evaluate its role in various central nervous system diseases. Ultimately, this review will provide theoretical support for the development of novel drugs specifically targeting GlyRs.
Receptors, Glycine/physiology*
;
Humans
;
Animals
;
Central Nervous System Diseases/metabolism*
9.Characteristics of amino acid metabolism in myeloid-derived suppressor cells in septic mice.
Yuan MA ; Yue ZHANG ; Rui LI ; Shu Wei DENG ; Qiu Shi QIN ; Liu Luan ZHU
Journal of Peking University(Health Sciences) 2022;54(3):532-540
OBJECTIVE:
To explore the amino acid metabolomics characteristics of myeloid-derived suppressor cells (MDSCs) in mice with sepsis induced by the cecal ligation and puncture (CLP).
METHODS:
The sepsis mouse model was prepared by CLP, and the mice were randomly divided into a sham operation group (sham group, n = 10) and a CLP model group (n = 10). On the 7th day after the operation, 5 mice were randomly selected from the surviving mice in each group, and the bone marrow MDSCs of the mice were isolated. Bone marrow MDSCs were separated to measure the oxygen consumption rate (OCR) by using Agilent Seahorse XF technology and to detect the contents of intracellular amino acids and oligopeptides through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) technology. Different metabolites and potential biomarkers were analyzed by univariate statistical analysis and multivariate statistical analysis. The major metabolic pathways were enriched using the small molecular pathway database (SMPDB).
RESULTS:
The proportion of MDSCs in the bone marrow of CLP group mice (75.53% ± 6.02%) was significantly greater than that of the sham group (43.15%± 7.42%, t = 7.582, P < 0.001), and the basal respiratory rate [(50.03±1.20) pmol/min], maximum respiration rate [(78.07±2.57) pmol/min] and adenosine triphosphate (ATP) production [(25.30±1.21) pmol/min] of MDSCs in the bone marrow of CLP group mice were significantly greater than the basal respiration rate [(34.53±0.96) pmol/min, (t = 17.41, P < 0.001)], maximum respiration rate [(42.57±1.87) pmol/min, (t = 19.33, P < 0.001)], and ATP production [(12.63±0.96) pmol/min, (t = 14.18, P < 0.001)] of sham group. Leucine, threonine, glycine, etc. were potential biomarkers of septic MDSCs (all P < 0.05). The increased amino acids were mainly enriched in metabolic pathways, such as malate-aspartate shuttle, ammonia recovery, alanine metabolism, glutathione metabolism, phenylalanine and tyrosine metabolism, urea cycle, glycine and serine metabolism, β-alanine metabolism, glutamate metabolism, arginine and proline metabolism.
CONCLUSION
The enhanced mitochondrial oxidative phosphorylation, malate-aspartate shuttle and alanine metabolism in MDSCs of CLP mice may provide raw materials for mitochondrial aerobic respiration, thereby promoting the immunosuppressive function of MDSCs. Blocking the above metabolic pathways may reduce the risk of secondary infection in sepsis and improve the prognosis.
Adenosine Triphosphate/metabolism*
;
Alanine/metabolism*
;
Animals
;
Aspartic Acid/metabolism*
;
Biomarkers/metabolism*
;
Chromatography, Liquid
;
Glycine/metabolism*
;
Malates/metabolism*
;
Mice
;
Myeloid-Derived Suppressor Cells/metabolism*
;
Sepsis/complications*
;
Tandem Mass Spectrometry
10.Catalytic mechanism, molecular engineering and applications of threonine aldolases.
Qijia CHEN ; Xi CHEN ; Jianxiong HAO ; Dunming ZHU
Chinese Journal of Biotechnology 2021;37(12):4215-4230
Threonine aldolases catalyze the aldol condensation of aldehydes with glycine to furnish β-hydroxy-α-amino acid with two stereogenic centers in a single reaction. This is one of the most promising green methods for the synthesis of optically pure β-hydroxy-α-amino acid with high atomic economy and less negative environmental impact. Several threonine aldolases from different origins have been identified and characterized. The insufficient -carbon stereoselectivity and the challenges of balancing kinetic versus thermodynamic control to achieve the optimal optical purity and yield hampered the application of threonine aldolases. This review summarizes the recent advances in discovery, catalytic mechanism, high-throughput screening, molecular engineering and applications of threonine aldolases, with the aim to provide some insights for further research in this field.
Amino Acids
;
Catalysis
;
Glycine
;
Glycine Hydroxymethyltransferase/metabolism*
;
Kinetics
;
Substrate Specificity
;
Threonine

Result Analysis
Print
Save
E-mail