1.Mining, characterization, and expression of a fructan sucrase for efficient conversion of soybean oligosaccharides.
Bin WANG ; Jingru YING ; Yuanyuan CHEN ; Zemin FANG ; Yazhong XIAO ; Wei FANG ; Dongbang YAO
Chinese Journal of Biotechnology 2025;41(1):333-351
The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme. Finally, recombinant extracellular expression of this gene was carried out in Bacillus subtilis. The results showed that a novel fructan sucrase, BhLS 39, was mined from Bacillus halotolerans. With sucrose and raffinose as substrates, BhLS 39 showed the optimal temperatures of 50 ℃ and 55 ℃, optimal pH 5.5 for both, and Kcat/Km ratio of 3.4 and 6.6 L/(mmol·s), respectively. When 400 g/L raffinose was used as the substrate, the melibiose conversion rate was 84.6% after 30 min treatment with 5 U BhLS 39. Furthermore, BhLS 39 catalyzed the conversion of sucrose to produce levan-type-fructooligosaccharide and levan. Then, the recombinant extracellular expression of BhLS 39 in B. subtilis was achieved. The co-expression of the intracellular chaperone DnaK and the extracellular chaperone PrsA increased the extracellular activity of the recombinant BhLS 39 by 5.2 folds to 17 U/mL compared with that of the control strain. BhLS 39 obtained in this study is conducive to improving the quality and economic benefits of soybean oligosaccharides. At the same time, the strategy used here to enhance the extracellular expression of BhLS 39 will also promote the efficient recombinant expression of other proteins in B. subtilis.
Oligosaccharides/metabolism*
;
Glycine max/metabolism*
;
Bacillus subtilis/metabolism*
;
Sucrase/biosynthesis*
;
Raffinose/metabolism*
;
Fructans/metabolism*
;
Sucrose/metabolism*
;
Bacillus/genetics*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/biosynthesis*
2.Effects of Gly mutations N-terminal to the integrin-binding sequence on the structure and function of recombinant collagen.
Fei LI ; Yuxi HOU ; Ben RAO ; Xiaoyan LIU ; Yaping WANG ; Yimin QIU
Chinese Journal of Biotechnology 2025;41(4):1573-1587
Collagen, a vital matrix protein for various tissue and functions in animals, is widely applied in biomaterials. In type Ⅰ collagen, missense mutations of glycine (Gly) in the Gly-Xaa-Yaa triplet of the triple helix are a major cause of osteogenesis imperfecta (OI). Clinical manifestations exhibit marked heterogeneity, spanning a broad disease spectrum from mild skeletal fragility (Type Ⅰ) to severe limb deformities (Type Ⅲ) and perinatal lethal forms (Type Ⅱ). This study utilized recombinant collagen as a model to further elucidate whether Gly→Ala/Val mutations at the N-terminus of the integrin-binding sequence GFPGER affect collagen structure and function, and to explore the underlying mechanisms by which missense mutations impact the biological function of collagen. By introducing Ala and Val substitutions at seven Gly positions N-terminal to the GFPGER sequence, we systematically assessed the effects of these amino acid replacements on the triple-helical structure, thermal stability, integrin-binding ability, and cell adhesion of recombinant collagen. All constructs formed a stable triple-helix structure, with slightly compromised thermal stability. Gly→Val substitutions increased the susceptibility of recombinant collagen to trypsin, which suggested local conformational perturbations in the triple helix. In addition, Gly→Val substitutions significantly reduced the integrin-binding affinity and decreased HT1080 cell adhesion, with the effects stronger than Gly→Ala substitutions. Compared with Gly→Ala substitutions, substitution of Gly with the larger residue Val had enhanced negative effects on the structure and function of recombinant collagen. These findings provide new insights into the molecular mechanisms of osteogenesis imperfecta and offer theoretical references and experimental foundations for the design of collagen sequences and the development of collagen-based biomaterials.
Recombinant Proteins/biosynthesis*
;
Glycine/genetics*
;
Humans
;
Osteogenesis Imperfecta/genetics*
;
Integrins/metabolism*
;
Collagen/metabolism*
;
Collagen Type I/metabolism*
;
Amino Acid Substitution
;
Mutation
;
Mutation, Missense
3.Cloning and functional analysis of GmMAX2b involved in disease resistance.
Jiahui FU ; Lin ZUO ; Weiqun HUANG ; Song SUN ; Liangyu GUO ; Min HU ; Peilan LU ; Shanshan LIN ; Kangjing LIANG ; Xinli SUN ; Qi JIA
Chinese Journal of Biotechnology 2025;41(7):2803-2817
The plant F-box protein more axillary growth 2 (MAX2) is a key factor in the signal transduction of strigolactones (SLs) and karrinkins (KARs). As the main component of the SKP1-CUL1-FBX (SCF) complex ubiquitin ligase E3, MAX2 is responsible for specifically recognizing the target proteins, suppressor of MAX2 1/SMAX1-like proteins (SMAX1/SMXLs), which would be degraded after ubiquitination. It can thereby regulate plant morphogenesis and stress responses. There exist homologous genes of MAX2 in the important grain and oil crop soybean (Glycine max). However, its role in plant defense responses has not been investigated yet. Here, GmMAX2b, a homologous gene of MAX2, was successfully cloned from stressed soybean. Bioinformatics analysis revealed that there were two MAX2 homologous genes, GmMAX2a and GmMAX2b, with a similarity of 96.2% in soybean. Their F-box regions were highly conserved. The sequence alignment and cluster analysis of plant MAX2 homologous proteins basically reflected the evolutionary relationship of plants and also suggested that soybean MAX2 might be a multifunctional protein. Expression analysis showed that plant pathogen infection and salicylic acid treatment induced the expression of GmMAX2b in soybean, which is consistent with that of MAX2 in Arabidopsis. Ectopic expression of GmMAX2b compensated for the susceptibility of Arabidopsis max2-2 mutant to pathogen, indicating that GmMAX2b positively regulated plant disease resistance. In addition, yeast two hybrid technology was used to explore the potential target proteins of GmMAX2b. The results showed that GmMAX2b interacted with SMXL6 and weakly interacted with SMXL2. In summary, GmMAX2b is a positive regulator in plant defense responses, and its expression is induced by pathogen infection and salicylic acid treatment. GmMAX2b might exert its effect through interaction with SMXL6 and SMXL2. This study expands the theoretical exploration of soybean disease resistant F-box and provides a scientific basis for future soybean disease resistant breeding.
Glycine max/metabolism*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plant Proteins/genetics*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
F-Box Proteins/genetics*
;
Arabidopsis/genetics*
;
Phylogeny
4.Silencing GmWRKY33B genes leads to reduced disease resistance in soybean.
Chenli ZHONG ; Wenxu WANG ; Lina LIAO ; Jianzhong LIU
Chinese Journal of Biotechnology 2024;40(1):163-176
The WRKYs are a group of plant-specific transcription factors that play important roles in defense responses. In this study, we silenced 2 GmWRKY33B homologous genes using a bean pod mosaic virus (BPMV) vector carrying a single fragment from the conserved region of the GmWRKY33B genes. Silencing GmWRKY33B did not result in morphological changes. However, significantly reduced resistances to Pseudomonas syringae pv. glycinea (Psg) and soybean mosaic virus (SMV) were observed in the GmWRKY33B-silenced plants, indicating a positive role of the GmWRKY33B genes in disease resistance. Kinase assay showed that silencing the GmWRKY33B genes significantly reduced the activation of GmMPK6, but not GmMPK3, in response to flg22 treatment. Reverse transcriptase PCR (RT-PCR) analysis of the genes encoding prenyltransferases (PTs), which are the key enzymes in the biosynthesis of glyceollin, showed that the Psg-induced expression of these genes was significantly reduced in the GmWRKY33B-silenced plants compared with the BPMV-0 empty vector plants, which correlated with the presence of the W-boxes in the promoter regions of these genes. Taken together, our results suggest that GmWRKY33Bs are involved in soybean immunity through regulating the activation of the kinase activity of GmMPK6 as well as through regulating the expression of the key genes encoding the biosynthesis of glyceollins.
Glycine max/genetics*
;
Disease Resistance/genetics*
;
Biological Assay
;
Dimethylallyltranstransferase
;
Gene Silencing
5.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
6.Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance.
Miao-Miao LIU ; Xiao-Jing ZHANG ; Yan GAO ; Zhi-Cheng SHEN ; Chao-Yang LIN
Journal of Zhejiang University. Science. B 2018;19(8):610-619
A transgenic maize event ZD12-6 expressing a Bacillus thuringiensis (Bt) fusion protein Cry1Ab/Cry2Aj and a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein G10 was characterized and evaluated. Southern blot analysis indicated that ZD12-6 is a single copy integration event. The insert site was determined to be at chromosome 1 by border sequence analysis. Expression analyses of Bt fusion protein Cry1Ab/Cry2Aj and the EPSPS protein G10 suggested that they are both expressed stably in different generations. Insect bioassays demonstrated that the transgenic plants are highly resistant to Asian corn borer (Ostrinia furnacalis), cotton boll worm (Helicoverpa armigera), and armyworm (Mythimna separata). This study suggested that ZD12-6 has the potential to be developed into a commercial transgenic line.
3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism*
;
Animals
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
China
;
Disease Resistance/genetics*
;
Drug Resistance/genetics*
;
Endotoxins/metabolism*
;
Gene Expression Profiling
;
Glycine/chemistry*
;
Hemolysin Proteins/metabolism*
;
Insecta
;
Plant Diseases/prevention & control*
;
Plants, Genetically Modified/genetics*
;
Zea mays/genetics*
;
Glyphosate
8.Clinical and genetic analyses of a family with atypical nonketotic hyperglycinemia caused by compound heterozygous mutations in the GLDC gene.
Tie-Jia JIANG ; Jing-Jing JIANG ; Jia-Lu XU ; Jing ZHEN ; Pei-Fang JIANG ; Feng GAO
Chinese Journal of Contemporary Pediatrics 2017;19(10):1087-1091
Nonketotic hyperglycinemia (NKH) is an autosomal recessive hereditary disease caused by a defect in the glycine cleavage system and is classified into typical and atypical NKH. Atypical NKH has complex manifestations and is difficult to diagnose in clinical practice. This article reports a family of NKH. The parents had normal phenotypes, and the older brother and the younger sister developed this disease in the neonatal period. The older brother manifested as intractable epilepsy, severe spastic diplegia, intellectual disability, an increased level of glycine in blood and cerebrospinal fluid, an increased glycine/creatinine ratio in urine, and an increased ratio of glycine concentration in cerebrospinal fluid and blood. The younger sister manifested as delayed language development, ataxia, chorea, mental and behavior disorders induced by pyrexia, hypotonia, an increased level of glycine in cerebrospinal fluid, and an increased ratio of glycine concentration in cerebrospinal fluid and blood. High-throughput sequencing found a maternal missense mutation, c.3006C>G (p.C1002W), and a paternal nonsense mutation, c.1256C>G (p.S419X), in the GLDC gene in both patients. These two mutations were thought to be pathogenic mutations by a biological software. H293T cells transfected with these two mutants of the GLDC gene had a down-regulated activity of glycine decarboxylase. NKH has various phenotypes, and high-throughput sequencing helps to make a confirmed diagnosis. Atypical NKH is associated with the downregulated activity of glycine decarboxylase caused by gene mutations.
Child
;
Child, Preschool
;
Female
;
Glycine Dehydrogenase (Decarboxylating)
;
genetics
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Hyperglycinemia, Nonketotic
;
genetics
;
Male
;
Mutation
9.Clinical and molecular genetic study of nonketotic hyperglycinemia in a Chinese family.
Zhi-Jie GAO ; Qian JIANG ; Qian CHEN ; Ke-Ming XU
Chinese Journal of Contemporary Pediatrics 2017;19(3):268-271
Nonketotic hyperglycinemia (NKH) is a rare, inborn error of metabolism. In this case report, a Chinese male infant was diagnosed with NKH caused by GLDC gene mutation. The clinical characteristics and genetic diagnosis were reported. The infant presented with an onset of early metabolic encephalopathy and Ohtahara syndrome. Both blood and urinary levels of metabolites were in the normal range. Brain MRI images indicated a poor development of corpus callosum, and a burst suppression pattern was found in the EEG. Results of target gene sequencing technology combined with multiplex ligation-dependent probe amplification (MLPA) indicated a heterozygous missense mutation of c.1786 C>T (p.R596X) in maternal exon 15 and a loss of heterozygosity of 4-15 exon gross deletions in paternal GLDC gene. These definite pathogenic mutations confirmed the diagnosis of NKH. The infant's clinical condition was not improved after treatment with adreno-cortico-tropic-hormone, topiramate and dextromethorphan, and he finally died at 4 months of age. Patients with NKH often exhibit complicated clinical phenotypes and are lack of specific symptoms. NKH could be diagnosed by metabolic screening and molecular genetic analysis.
Glycine Dehydrogenase (Decarboxylating)
;
genetics
;
Humans
;
Hyperglycinemia, Nonketotic
;
diagnosis
;
genetics
;
Infant, Newborn
;
Male
;
Mutation
10.Analysis of MAT1A gene mutations in a child affected with simple hypermethioninemia.
Yun SUN ; Dingyuan MA ; Yanyun WANG ; Bin YANG ; Tao JIANG
Chinese Journal of Medical Genetics 2017;34(1):98-101
OBJECTIVETo detect potential mutations of MAT1A gene in a child suspected with simple hypermethioninemia by MS/MS neonatal screening.
METHODSClinical data of the child was collected. Genomic DNA was extracted by a standard method and subjected to targeted sequencing using an Ion AmpliseqInherited Disease Panel. Detected mutations were verified by Sanger sequencing.
RESULTSThe child showed no clinical features except evaluated methionine. A novel compound mutation of the MAT1A gene, i.e., c.345delA and c.529C>T, was identified in the child. His father and mother were found to be heterozygous for the c.345delA mutation and c.529C>T mutation, respectively.
CONCLUSIONThe compound mutation c.345delA and c.529C>T of the MAT1A gene probably underlie the disease in the child. The semi-conductor sequencing has provided an important means for the diagnosis of hereditary diseases.
Amino Acid Metabolism, Inborn Errors ; genetics ; pathology ; Base Sequence ; DNA Mutational Analysis ; methods ; Family Health ; Fathers ; Female ; Genetic Predisposition to Disease ; genetics ; Glycine N-Methyltransferase ; deficiency ; genetics ; Heterozygote ; Humans ; Infant, Newborn ; Infant, Newborn, Diseases ; genetics ; pathology ; Male ; Methionine Adenosyltransferase ; genetics ; Mothers ; Mutation

Result Analysis
Print
Save
E-mail