1.Mechanism of Cordyceps militaris against non-small cell lung cancer: based on serum metabolomics.
Ying-Ying LU ; Xiao HUANG ; Zi-Chen LUO ; Ming-Yuan QI ; Jin-Jun SHAN ; Wen ZHANG ; Liu-Qing DI
China Journal of Chinese Materia Medica 2022;47(18):5032-5039
This study investigated the potential mechanism of Cordyceps militaris(CM) against non-small cell lung cancer(NSCLC) based on serum untargeted metabolomics. Specifically, Balb/c nude mice were used to generate the human lung cancer A549 xenograft mouse model. The tumor volume, tumor weight, and tumor inhibition rate in mice in the model, cisplatin, Cordyceps(low-, medium-, and high-dose), and CM(low-, medium-, and high-dose) groups were compared to evaluate the influence of CM on lung cancer. Gas chromatography-mass spectrometry(GC-MS) was used for the analysis of mouse serum, SIMCA 13.0 for the compa-rison of metabolic profiles, and MetaboAnalyst 5.0 for the analysis of metabolic pathways. According to the pharmacodynamic data, the tumor volume and tumor weight of mice in high-dose CM group and cisplatin group decreased as compared with those in the model group(P<0.05 or P<0.01). The results of serum metabolomics showed that the metabolic profiles of the model group were significantly different from those of the high-dose CM group, and the content of endogenous metabolites was adjusted to different degrees. A total of 42 differential metabolites and 7 differential metabolic pathways were identified. In conclusion, CM could significantly inhibit the tumor growth of lung cancer xenograft mice. The mechanism is the likelihood that it influences the aminoacyl-tRNA biosynthesis, the metabolism of D-glutamine and D-glutamate, metabolism of alanine, aspartate, and glutamate, metabolism of glyoxylate and dicarboxylic acid, biosynthesis of phenylalanine, tyrosine, and tryptophan, arginine biosynthesis as well as nitrogen metabolism. This study elucidated the underlying mechanism of CM against NSCLC from the point of metabolites. The results would lay a foundation for the anticancer research and clinical application of CM.
Alanine/metabolism*
;
Animals
;
Arginine/metabolism*
;
Aspartic Acid
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Cisplatin/pharmacology*
;
Cordyceps
;
Glutamic Acid
;
Glutamine
;
Glyoxylates/metabolism*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Metabolomics/methods*
;
Mice
;
Mice, Nude
;
Nitrogen/metabolism*
;
Phenylalanine/metabolism*
;
RNA, Transfer/metabolism*
;
Tryptophan/metabolism*
;
Tyrosine/metabolism*
2.Oyster Protein Hydrolysate Alleviates Cadmium Toxicity by Restoring Cadmium-Induced Intestinal Damage and Gut Microbiota Dysbiosis in Mice via Its Abundance of Methionine, Tyrosine, and Glutamine.
Jing Wen WANG ; Zhi Jia FANG ; Yong Bin LI ; Lin Ru HUANG ; Li Jun SUN ; Ying LIU ; Ya Ling WANG ; Jian Meng LIAO
Biomedical and Environmental Sciences 2022;35(7):669-673
3.Effects of aerobic exercise and glutamine on oxidative stress and expression of related factors in type 2 diabetic rats.
Chinese Journal of Applied Physiology 2019;35(2):150-154
OBJECTIVE:
To investigate the effects of aerobic exercise and glutamine (Gln) on anti-oxidative stress and inflammatory factors in type 2 diabetes mellitus (T2MD) rats.
METHODS:
Diabetic rat model was induced by streptozotocin (STZ). Fifty 6-week old male SD rats were randomly divided into 5 groups (n=10), including quiet control group (N), diabetes control group (D), diabetic aerobic exercise group (DE), diabetic glutamine group (DG) and diabetic aerobic exercise glutamine group (DEG). After 6 weeks, the related indicators of glucose and lipid metabolism, anti-oxidative stress and inflammatory factors in diabetic rats were detected, and the possible mechanism affecting inflammatory response were explored.
RESULTS:
Compared with group N, the levels of serum malondialdehyde(MDA), blood glucose, total cholesterol(TC), triglyceride(TG), insulin, leptin and tumor necrosis factor-α(TNF-α) in group D were increased significantly (P<0.01). Compared with group D, serum levels of MDA, blood glucose, TC, TG, insulin, leptin and TNF-α in three intervention groups were decreased significantly, while the levels of SOD, GSH-Px and adiponectin were increased, and the combined effect was more obvious (P<0.01).
CONCLUSION
Both aerobic exercise and Gln can relieve the glucose and lipid metabolism and disturbance, oxidative stress injury and inflammation in diabetic rats.
Animals
;
Blood Glucose
;
analysis
;
Diabetes Mellitus, Experimental
;
Diabetes Mellitus, Type 2
;
therapy
;
Glutamine
;
pharmacology
;
Leptin
;
blood
;
Lipid Metabolism
;
Lipids
;
blood
;
Male
;
Malondialdehyde
;
blood
;
Oxidative Stress
;
Physical Conditioning, Animal
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
4.Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model.
Yingqian ZHAO ; Qiang WANG ; Yuan WANG ; Jie LI ; Gang LU ; Zhibin LIU
Environmental Health and Preventive Medicine 2019;24(1):4-4
BACKGROUND:
Parkinson's disease is a neurodegenerative disorder, and recent studies suggested that oxidative stress contributes to the degeneration of dopamine cell in Parkinson's disease. Glutamine also has a positive role in reducing oxidative stress damage. In this study, we hypothesized that glutamine offers protection against oxidative stress injury in 1-methyl-4-phenylpyridinium (MPP)-induced Parkinson's disease cell model.
METHODS:
MPP was used to induce PD models in PC12 cells and classified into control, M0 (MPP), G0 (glutamine), and M0+G0 groups. CCK-8 and AO/EB staining assays were used to examine cell proliferation and apoptosis, respectively. Western blotting was applied to examine the protein expression of PI3K, P-Akt, Akt, P-mTOR, and mTOR.
RESULTS:
We showed that glutamine suppressed cytotoxicity induced by MPP in PC12 cells. MPP decreased the superoxide dismutase and glutathione peroxidase activity and increased the malondialdehyde content, which were restored by glutamine. Moreover, MPP increased the expression of PI3K, P-Akt, Akt, P-mTOR, and mTOR, which were inhibited by glutamine. And the antioxidant capacity of glutamine on PC12 cells could be improved by LY294002 and inhibited by IGF-1.
CONCLUSION
These results suggest that glutamine strengthens the antioxidant capacity in PC12 cells induced by MPP through inhibiting the activation of the PI3K/Akt signaling pathway. The effects of glutamine should be investigated and the protective mechanism of glutamine in PD must be explored in future studies.
1-Methyl-4-phenylpyridinium
;
administration & dosage
;
Analysis of Variance
;
Animals
;
Cell Culture Techniques
;
Disease Models, Animal
;
Glutamine
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Parkinson Disease
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Protective Agents
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
5.Effect of ASCT2 gene knock-down by shRNA on biological behaviors of colorectal cancer cells.
Canfeng CAI ; Bing ZENG ; Jun ZENG ; Haiyang XIN ; Chaoming TANG
Chinese Journal of Gastrointestinal Surgery 2017;20(4):450-454
OBJECTIVETo investigate the effect of ASCT2 gene (glutamine transporter) knock-down by shRNA on biological behaviors of colorectal cancer cells.
METHODSshRNA was transfected into colorectal cancer cells Lovo and SW480 to knockdown ASCT2 mediated by Lipofectamine 2000. Reverse transcription-PCR and Western blot were used to examine the mRNA and protein expression of ASCT2. MTT and transwell assay were used to determine the proliferation and invasiveness of Lovo and SW480 cells. Radioactive-tracer was used to detect the uptake of glutamine.
RESULTSASCT2 mRNA and protein levels were significantly down-regulated by shRNA in Lovo and SW480 cells(P<0.01). MTT and transwell assays showed that ASCT2 knock-down could significantly inhibit the proliferation of Lovo and SW480 cells (A490) and decrease the number of invasive Lovo and SW480 cells from the membrane (both P<0.01). The number of membrane Lovo cells in shASCT group and control group was 46.3±5.9 and 197.7±9.1, respectively while the number of membrane SW480 cells in shASCT group and control group was 29.7±3.8 and 139.0±9.5, respectively. Radioactive-tracer showed that shASCT2 transfection could significantly reduce the uptake of glutamine, with an inhibition rate of 79.15% in Lovo and 67.22% in SW480 cells (both P<0.01).
CONCLUSIONSASCT2 plays an oncogenic role in colonic cancer, and its promotion mechanism may be associated with glutamine metabolism. ASCT2 may be a novel therapeutic target of colonic cancer.
Amino Acid Transport System ASC ; drug effects ; genetics ; physiology ; Cell Line, Tumor ; physiology ; Cell Proliferation ; genetics ; Colorectal Neoplasms ; genetics ; physiopathology ; Down-Regulation ; drug effects ; Gene Knockdown Techniques ; methods ; Glutamine ; drug effects ; genetics ; physiology ; Humans ; Minor Histocompatibility Antigens ; drug effects ; genetics ; physiology ; Neoplasm Invasiveness ; genetics ; physiopathology ; Oncogenes ; drug effects ; genetics ; RNA, Messenger ; physiology ; RNA, Small Interfering ; pharmacology ; Transfection
6.Effects of Couplet Medicines (Astragalus Membranaceus and Jiaozhen) on Intestinal Barrier in Postoperative Colorectal Cancer Patients.
Qian-zhu WANG ; Xiao-ping CHEN ; Jian-ping HUANG ; Xu-wei JIANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(11):1307-1312
OBJECTIVETo observe the effect of the couplet medicines (Astragalus Membranaceus and Jiaozhen) on intestinal barrier functions of postoperative colorectal cancer patients.
METHODSTotally 90 inpatients with confirmed colorectal cancer by pathological diagnosis were recruited as subjects in this study. They were assigned to the Chinese medicine group (CM, treated with Astragalus Membranaceus and Jiaozhen), the Western medicine group (WM, treated with glutamine), and the blank control group (treated with normal saline) according to random digit table, 30 in each group. The treatment course consisted of eight days. Levels of blood D-lactic acid, diamine oxidase (DAO), urinary lactulose/mannitol ratio (L/M), ET, TNF-alpha, and postoperative recovery time of bowel sound were observed before surgery and after surgery. The effect of the couplet medicines (Astragalus Membranaceus and Jiaozhen) on intestinal barrier functions of postoperative colorectal cancer patients were comprehensively assessed by taking blood D-lactic acid levels, DAO levels, urinary L/M as main potency indices; ET and TNF-alpha, recovery time of bowel sound as the secondary potency indices.
RESULTSCM showed similar effect with that of WM in improving blood D-lactic acid levels and DAO levels, and urinary L/M ratio, with no statistical difference between them (P > 0.05). But they showed better effect than that of the blank control group (P < 0.05). Levels of ET and TNF-alpha were decreased more in the CM group than in the WM group (P < 0.05). The recovery time of bowel sound was shorter in the CM group than in the WM group (P < 0.05, P < 0.01). Levels of ET and TNF-alpha were decreased more in the WM group than in the blank control group (P < 0.05). There was no statistical difference in the recovery time of bowel sound between the WM group and the blank control group (P > 0.05).
CONCLUSIONSThe couplet medicines (Astragalus Membranaceus and Jiaozhen) had obvious protection for intestinal barrier dysfunction of postoperative colorectal cancer patients, showing similar efficacy to that of WM. It was even superior to glutamine in restoring bowel functions, reducing toxin absorption, and lowering levels of pro-inflammatory factors.
Amine Oxidase (Copper-Containing) ; Antineoplastic Combined Chemotherapy Protocols ; pharmacology ; therapeutic use ; Astragalus membranaceus ; Chemotherapy, Adjuvant ; methods ; Colorectal Neoplasms ; drug therapy ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Glutamine ; therapeutic use ; Humans ; Intestinal Mucosa ; drug effects ; Intestines ; Lactic Acid ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
7.Effects of early oral administration of mixed enteral nutritional agent on intestinal mucosal barrier of patients with severe burn injury.
Kedai SUN ; Zhiwei DONG ; Jing CHEN ; Pan LIU ; Yali GONG ; Yizhi PENG
Chinese Journal of Burns 2015;31(1):25-29
OBJECTIVETo explore the effects of oral administration of mixed enteral nutritional agent on intestinal mucosal barrier of patients with severe burn injury at early stage.
METHODSTwenty-four patients with severe burn injury admitted to our burn ward from August 2013 to September 2014, conforming to the study criteria, were divided into conventional therapy group (n = 12) and early enteral feeding group (n = 12) according to the random number table. Patients in conventional therapy group received conventional treatment immediately after admission, while those in early enteral feeding group were orally given 100 mL of a mixture of glutamine, probiotics, and prebiotics once a day besides conventional treatment for 7 days. Serum levels of diamine oxidase (DAO) and procalcitonin (PCT) and plasma level of LPS were determined by ELISA before treatment and on treatment day (TD) 1, 3, 7, 14, and 21. Wound secretion and blood samples were collected for bacterial culture within the 21 TD. The incidence of MODS within the 21 TD was observed. Data were processed with Fisher's exact test, rank sum test, analysis of variance for repeated measurement, and LSD-t test.
RESULTS(1) Serum levels of DAO in patients of early enteral feeding group on TD 7, 14, and 21 were respectively (14.9 ± 3.7), (12.4 ± 3.1), and (9.5 ± 0.7) ng/mL, which were significantly lower than those of conventional therapy group [(17.5 ± 4.0), (16.3 ± 3.3), and (13.0 ± 1.1) ng/mL, with t values from 2.913 to 15.304, P values below 0.01]. Serum levels of DAO at the other time points were close between the two groups (with t values from -0.598 to 0.139, P values above 0.05). (2) Compared with serum levels of PCT in patients of conventional therapy group [(11.7 ± 20.9) and (12.9 ± 23.9) ng/mL], those of early enteral feeding group were significantly lower on TD 7 and 14 [(2.7 ± 8.1) and (2.0 ± 5.6) ng/mL, with Z values respectively -2.919 and -2.139, P < 0.05 or P < 0.01]. Serum levels of PCT at the other time points were close between the two groups (with Z values from -1.833 to -0.346, P values above 0.05). (3) Plasma level of LPS in patients of early enteral feeding group on TD 7 was (33 ± 56) pg/mL, which was significantly lower than that of conventional therapy group [(102 ± 108) pg/mL, Z = -2.046, P < 0.05]. Plasma levels of LPS at the other time points between the two groups showed no significant difference (with Z values from -2.003~-0.526, P values above 0.05). (4) Positive results in bacterial culture of wound secretion were approximately the same between the two groups (P > 0.05). Bacterial culture of blood was positive in 7 patients of conventional therapy group and 1 patient of early enteral feeding group, showing significantly statistical difference (P < 0.05). MODS was observed in 1 patient of conventional therapy group, showing no significantly statistical difference with that of early enteral feeding group (no patient, P > 0.05).
CONCLUSIONSEarly intestinal feeding of mixed enteral nutritional agent in addition to conventional therapy can effectively promote repair of the impairment of intestinal mucosal barrier, protect integrity of intestinal mucosa, reduce damage to intestines, and alleviate inflammatory response in patients suffering from severe burn injury.
Administration, Oral ; Amine Oxidase (Copper-Containing) ; blood ; Burns ; metabolism ; therapy ; Calcitonin ; blood ; Calcitonin Gene-Related Peptide ; Enteral Nutrition ; methods ; Female ; Glutamine ; administration & dosage ; pharmacology ; Humans ; Intestinal Mucosa ; drug effects ; metabolism ; Protein Precursors ; blood ; Treatment Outcome ; Wound Healing
8.Effects of panthenol-glutamine on intestine of rats with burn injury and its dose-effect relationship.
Pei WANG ; Yun ZHAO ; Hua-bing QI ; Dong YI ; Feng-jun WANG ; Shi-liang WANG ; Xi PENG
Chinese Journal of Burns 2013;29(4):338-343
OBJECTIVETo study the effects of the panthenol-glutamine on intestinal damage and motor function of intestine in rats with burn injury as well as its dose-effect relationship.
METHODS(1) Experiment 1. Ninety SD rats were divided into groups A-I according to the random number table, with 10 rats in each group. Rats in groups A-I were inflicted with 30% TBSA full-thickness burn and fed by gavage with panthenol and glutamine at post injury hour (PIH) 4, in the whole dosage of 1.00 and 4, 0.50 and 4, 0.25 and 4, 1.00 and 2, 0.50 and 2, 0.25 and 2, 1.00 and 1, 0.50 and 1, 0.25 and 1 g·kg(-1)·d(-1). The feeding was carried out twice a day to achieve the total dosage in 7 days. On drug withdrawal day, blood and intestinal tissue were harvested to detect the intestinal propulsion index, diamine oxidase (DAO) activity in serum, and the content of acetylcholine and intestinal mucosa protein. The best proportion of panthenol and glutamine was screened. (2) Experiment 2. Seventy SD rats were divided into normal control (NC), burn (B), burn+panthenol (B+P), burn+glutamine (B+G), and burn+low, moderate, or high dose of panthenol-glutamine (B+LPG, B+MPG, B+HPG) groups according to the random number table, with 10 rats in each group. Rats in the latter 6 groups were inflicted with 30% TBSA full-thickness burn. Rats in the latter 5 groups were fed by gavage with panthenol and (or) glutamine at PIH 4. Rats in group B+P were fed with panthenol for 1 g·kg(-1)·d(-1), rats in group B+G with glutamine for 4 g·kg(-1)·d(-1), rats in groups B+LPG, B+MPG, and B+HPG with panthenol and glutamine in the dosage of 0.50 and 2, 1.00 and 4, 2.00 and 8 g·kg(-1)·d(-1). The feeding was carried out twice a day to achieve the total dosage for 7 days. The indexes and time point for observation were the same as those of experiment 1. Meanwhile, the pathological change in intestine was observed. The same process was carried out in the rats of group NC. Data were processed with factorial designed analysis of variance (ANOVA), one-way ANOVA and Fisher's exact probability test. LSD was applied for paired comparison.
RESULTS(1) The values of intestinal propulsion index and intestinal mucosa protein content in groups A and B were close (with P values all above 0.05), and were significantly higher than those of the other 7 groups (with P values all below 0.01). Content of acetylcholine in group A was significantly higher than that of the other 8 groups (with P values all below 0.01). DAO activity in groups A, D, and E was close in value (with P values all above 0.05), and all of the values were significantly lower than those of the other 6 groups (with P values all below 0.01). The best proportion of panthenol and glutamine was 1.00 and 4 g·kg(-1)·d(-1). (2) Compared with those of group NC, the intestinal propulsion index, the contents of acetylcholine and intestinal mucosa protein were decreased significantly, while the DAO activity obviously increased in group B (with P values all below 0.01); the intestinal propulsion index was decreased significantly in group B+P (P < 0.01); the intestinal propulsion index and content of acetylcholine were decreased significantly in group B+G (with P values all below 0.01); the intestinal propulsion index was decreased significantly in group B+LPG (P < 0.01); no obvious change was observed in groups B+MPG and B+HPG (with P values all above 0.05). Compared with those of group B [0.50 ± 0.07, (69 ± 10) µg/mL, (26 ± 11) µg/g, (0.672 ± 0.145) U/mL], the contents of acetylcholine and intestinal mucosa protein were increased significantly, DAO activity decreased significantly in group B+P (with P values all below 0.01); the contents of intestinal mucosa protein was increased significantly, DAO activity decreased significantly in group B+G (with P values all below 0.01); the contents of acetylcholine and intestinal mucosa protein were increased significantly in group B+LPG (with P values all below 0.01); the intestinal propulsion index, the contents of acetylcholine and intestinal mucosa protein were increased significantly, while the DAO activity obviously decreased in groups B+MPG and B+HPG [0.66 ± 0.07, 0.68 ± 0.05; (163 ± 24), (168 ± 15) µg/mL; (57 ± 7), (57 ± 7) µg/g; (0.203 ± 0.070), (0.193 ± 0.068) U/mL, with P values all below 0.01]. The levels of the four indexes in groups B+MPG and B+HPG were close or the same in values (with P values all above 0.05). Compared with those of group B, the numbers of rats with irregularly arranged villi in group B+P were decreased significantly (P < 0.05); the numbers of rats with villi decreased in height, irregularly arranged villi, and neutrophil infiltration in group B+G were decreased significantly (with P values all below 0.05); the numbers of rats with villi decreased in height, irregularly arranged villi, degeneration and necrosis of cells, and neutrophil infiltration in group B+LPG were decreased significantly (with P values all below 0.05); the numbers of rats with villi decreased in height and number, irregularly arranged villi, degeneration and necrosis of cells, and neutrophil infiltration in groups B+MPG and B+HPG were decreased significantly (with P values all below 0.05). There was no statistically significant difference between group B+HPG and group B+MPG for the former mentioned five indexes (with P values all above 0.05).
CONCLUSIONSCombined application of panthenol and glutamine can obviously reduce intestinal mucosa damage and promote gastrointestinal motility of rats with burn injury, and they show curative effect superior to exclusive use of either of the two drugs. The best proportion of panthenol and glutamine is 1.00 and 4 g·kg(-1)·d(-1).
Animals ; Burns ; physiopathology ; Dose-Response Relationship, Drug ; Female ; Gastrointestinal Motility ; drug effects ; Glutamine ; pharmacology ; Intestinal Mucosa ; drug effects ; Intestine, Small ; Intestines ; drug effects ; Male ; Pantothenic Acid ; analogs & derivatives ; pharmacology ; Rats ; Rats, Sprague-Dawley
9.Research on the mechanism and regulation of overtraining-related the function of neutrophils by the inhibitor of NADPH oxidase and glutamine supplementation.
Chinese Journal of Applied Physiology 2013;29(4):339-344
OBJECTIVETo investigate the method and mechanism for exercise-related immunosuppression via the inhibitor of NADPH oxidase diphenyleneiodonium(DPI) and glutamine supplementation and on the function of neutrophils after overtraining.
METHODSFifty male Wistar rats were randomly divided into five groups: a negative control group (C), an overtraining group (E), an overtraining + DPI intervention group (D), an overtraining+ glutamine supplementation group(G) and combined glutamine + DPI intervention group(DG). After 36 - 40 h from the last training, eight rats were randomly selected from each group, and blood was sampled from the orbital vein. ELISAs were used to measure serum cytokine levels and lipid peroxidation in blood plasma. Flow cytometry was used to measure neutrophil respiratory burst and phagocytosis. The activity of NADPH oxidase was assessed by chemiluminescence and the gene expression of gp91(phox) and p47(phox) of the NADPH-oxidase subunit was checked by Western blot.
RESULTSCompared with group C, the plasma concentrations of NO increased in group G, and the NO, cytokine-induced neutrophil chemoattractant (CINC) concentrations in group DG increased significantly. The respiratory burst and phagocytosis function of neutrophils were decreased in group E, but in group DG were increased when compared with those of group E. After overtraining the expression of gp91(phox) and p47(phox) was up regulated in group E. There were no significant changes in other groups except group DG, in which the expression of gp91(phox) was down regulated. Compared with group E, the expression of gp91(phox) and p47(phox) was up regulated in group D, group G and group DG.
CONCLUSIONThe activation of NADPH oxidase is responsible for the production of superoxide anions, which may be related to the decrease in neutrophil function after over training and is the mechanism of exercise-related immunosuppression. The DPI treatment combined glutamine supplementation can reverse the decrease neutrophils function after overtraining in vitro.
Animals ; Dietary Supplements ; Glutamine ; pharmacology ; Hyperkinesis ; physiopathology ; Male ; Membrane Glycoproteins ; metabolism ; NADPH Oxidase 2 ; NADPH Oxidases ; antagonists & inhibitors ; metabolism ; Neutrophils ; metabolism ; physiology ; Onium Compounds ; pharmacology ; Oxidation-Reduction ; Rats ; Rats, Wistar ; Respiratory Burst ; physiology
10.Experimental study on the glutamine's intervention effect on the opening of permeability transition pore in myocardial mitochondrial membrane.
Chinese Journal of Applied Physiology 2012;28(1):34-37
OBJECTIVETo explore the intervention effect and the possibly mechanism of the glutamine (Gln) on the opening change of the permeability transition pore (PTP) in the myocardial mitochondrial membrane under the overtraining state.
METHODS30 SD rats were randomly divided into 3 groups (n = 10): control group (CG group), overtraining group (OG group) and supplementary (Gln) + overtraining group group). Spectrophotometry was used to test the openness of the permeability transition pore in the myocardial mitochondrial membrane. Electrochemistry was used to test the malondialdehyde (MDA) and the glutathione (GSH) content and the phospholipase A2 (PLA2) activity.
RESULTSOG group compared with the GOG group, the absorbance (A0) and the absorbance change (Delta A) were decreased significantly (P < 0.05). Rh123 fluorescence (F0) intensity was significantly increased (P < 0.05). Rhodamine123 (Rh123) fluorescence change (delta F) was significantly decreased (P < 0.05). Compared with the GOG, the mitochondrial GSH was significantly decreased (P < 0.05), the PLA2 activity and the content of MDA were significantly increased (P <0.05).
CONCLUSIONOvertraining could lead to opening increase of permeability transition pore in the myocardial mitochondrial membrane, after overtraining, the production of the reactive oxygen species (ROS) and PLA2 activity were increased, GSH content was decreased. But added exogenous Gln had a significant intervention effect for these changes.
Animals ; Glutamine ; pharmacology ; Glutathione ; metabolism ; Male ; Mitochondria, Heart ; drug effects ; physiology ; Mitochondrial Membrane Transport Proteins ; metabolism ; Mitochondrial Membranes ; drug effects ; physiology ; Myocardium ; metabolism ; Permeability ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism

Result Analysis
Print
Save
E-mail