1.Ziwuliuzhu acupuncture modulates Glu/GABA‑Gln metabolic loop abnormalities in insomniac rats.
Jiarong XU ; Ao HUANG ; Zhikai DING ; Yu BAO ; Canghuan ZHAO ; Wenzhi CAI
Journal of Southern Medical University 2025;45(8):1616-1624
OBJECTIVES:
To investigate the therapeutic effect of Ziwuliuzhu acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
METHODS:
Forty male SD rats were randomly assigned to control group, model group, Najia group and Nazi group (n=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test. After modeling, the rats in Najia and Nazi groups received acupuncture for 7 days at specifically chosen sets of acupoints based on the Ziwuliuzhu rationale in traditional Chinese medicine. Pathological changes in the hypothalamic tissue of the rats were examined with HE staining, and the levels of Glu and GABA in the hypothalamus were determined with high-performance liquid chromatography (HPLC)-mass spectrometry (MS)/MS. Immunohistochemistry was used to detect the expressions of GABAA receptors (GABAARs) in the hypothalamus, and the expression levels of glutamate decarboxylase (GAD65/67) and glutamine synthetase (GS) were determined with Western blotting.
RESULTS:
Compared with the model group, the rats in Najia and Nazi groups exhibited decreased Glu levels and GABAA receptor expression and increased GABA levels with a decreased Glu/GABA ratio in the hypothalamus. Ziwuliuzhu acupuncture significantly increased the protein expressions of GAD65 and GAD67 and lowered the expression of GS in the hypothalamus in the rat models of insomnia.
CONCLUSIONS
Ziwuliuzhu acupuncture produces sedative and hypnotic effects in rat models of insomnia possibly by regulating Glu and GABA-Gln metabolism to restore the excitatory/inhibitory balance between Glu and GABA.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep Initiation and Maintenance Disorders/therapy*
;
Glutamine/metabolism*
;
Glutamic Acid/metabolism*
;
Acupuncture Therapy
;
Hypothalamus/metabolism*
;
Receptors, GABA-A/metabolism*
;
Acupuncture Points
2.Intrinsic Functional Connectivity Associated with γ‑Aminobutyric Acid and Glutamate/Glutamine in the Lateral Prefrontal Cortex and Internalizing Psychopathology in Adolescents.
Kai WANG ; Harry R SMOLKER ; Mark S BROWN ; Hannah R SNYDER ; Yu CHENG ; Benjamin L HANKIN ; Marie T BANICH
Neuroscience Bulletin 2025;41(9):1553-1569
In this study, we systematically tested the hypothesis that during the critical developmental period of adolescence, on a macro scale, the concentrations of major excitatory and inhibitory neurotransmitters (glutamate/glutamine and γ‑aminobutyric acid [GABA]) in the dorsal and ventral lateral prefrontal cortex are associated with the brain's functional connectivity and an individual's psychopathology. Neurotransmitters were measured via magnetic resonance spectroscopy while functional connectivity was measured with resting-state fMRI (n = 121). Seed-based and network-based analyses revealed associations of neurotransmitter concentrations and functional connectivities between regions/networks that are connected to prefrontal cortices via structural connections that are thought to be under dynamic development during adolescence. These regions tend to be boundary areas between functional networks. Furthermore, several connectivities were found to be associated with individual's levels of internalizing psychopathology. These findings provide insights into specific neurochemical mechanisms underlying the brain's macroscale functional organization, its development during adolescence, and its potential associations with symptoms associated with internalizing psychopathology.
Humans
;
Adolescent
;
Glutamic Acid/metabolism*
;
Prefrontal Cortex/diagnostic imaging*
;
Male
;
Glutamine/metabolism*
;
Female
;
gamma-Aminobutyric Acid/metabolism*
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Nerve Net/metabolism*
;
Neural Pathways
;
Connectome
3.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
4.Metabolic issues and nutritional strategies in burn wound repair.
Chinese Journal of Burns 2022;38(8):707-713
Wound is the most fundamental issue of burn injury, and its repair depends not only on effective wound treatment, but also on the good nutritional status of burned patients. Nutrition support is an important means to improve the nutritional status of patients and promote wound healing, and how to make it match the metabolism of burn wounds is a difficult task of nutrition therapy. In this paper, we analyzed the metabolic characteristics of different stages in burn wound healing, focused on the metabolic characteristics of glucose, protein, and glutamine in these stages, and proposed a nutritional strategy that is compatible with wound healing in order to maximize the role of nutrition therapy in wound repair.
Burns/therapy*
;
Glutamine
;
Humans
;
Nutritional Support
;
Proteins/metabolism*
;
Wound Healing
5.Mechanism of Cordyceps militaris against non-small cell lung cancer: based on serum metabolomics.
Ying-Ying LU ; Xiao HUANG ; Zi-Chen LUO ; Ming-Yuan QI ; Jin-Jun SHAN ; Wen ZHANG ; Liu-Qing DI
China Journal of Chinese Materia Medica 2022;47(18):5032-5039
This study investigated the potential mechanism of Cordyceps militaris(CM) against non-small cell lung cancer(NSCLC) based on serum untargeted metabolomics. Specifically, Balb/c nude mice were used to generate the human lung cancer A549 xenograft mouse model. The tumor volume, tumor weight, and tumor inhibition rate in mice in the model, cisplatin, Cordyceps(low-, medium-, and high-dose), and CM(low-, medium-, and high-dose) groups were compared to evaluate the influence of CM on lung cancer. Gas chromatography-mass spectrometry(GC-MS) was used for the analysis of mouse serum, SIMCA 13.0 for the compa-rison of metabolic profiles, and MetaboAnalyst 5.0 for the analysis of metabolic pathways. According to the pharmacodynamic data, the tumor volume and tumor weight of mice in high-dose CM group and cisplatin group decreased as compared with those in the model group(P<0.05 or P<0.01). The results of serum metabolomics showed that the metabolic profiles of the model group were significantly different from those of the high-dose CM group, and the content of endogenous metabolites was adjusted to different degrees. A total of 42 differential metabolites and 7 differential metabolic pathways were identified. In conclusion, CM could significantly inhibit the tumor growth of lung cancer xenograft mice. The mechanism is the likelihood that it influences the aminoacyl-tRNA biosynthesis, the metabolism of D-glutamine and D-glutamate, metabolism of alanine, aspartate, and glutamate, metabolism of glyoxylate and dicarboxylic acid, biosynthesis of phenylalanine, tyrosine, and tryptophan, arginine biosynthesis as well as nitrogen metabolism. This study elucidated the underlying mechanism of CM against NSCLC from the point of metabolites. The results would lay a foundation for the anticancer research and clinical application of CM.
Alanine/metabolism*
;
Animals
;
Arginine/metabolism*
;
Aspartic Acid
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Cisplatin/pharmacology*
;
Cordyceps
;
Glutamic Acid
;
Glutamine
;
Glyoxylates/metabolism*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Metabolomics/methods*
;
Mice
;
Mice, Nude
;
Nitrogen/metabolism*
;
Phenylalanine/metabolism*
;
RNA, Transfer/metabolism*
;
Tryptophan/metabolism*
;
Tyrosine/metabolism*
6.Oyster Protein Hydrolysate Alleviates Cadmium Toxicity by Restoring Cadmium-Induced Intestinal Damage and Gut Microbiota Dysbiosis in Mice via Its Abundance of Methionine, Tyrosine, and Glutamine.
Jing Wen WANG ; Zhi Jia FANG ; Yong Bin LI ; Lin Ru HUANG ; Li Jun SUN ; Ying LIU ; Ya Ling WANG ; Jian Meng LIAO
Biomedical and Environmental Sciences 2022;35(7):669-673
7.Effect of glutamine metabolism on chemoresistance and its mechanism in tumors.
Liyuan ZHU ; Xinyang HU ; Hongchuan JIN
Journal of Zhejiang University. Medical sciences 2021;50(1):32-40
The metabolic reprogramming of tumor cells is characterized by increased uptake of various nutrients including glutamine. Glutamine metabolism provides the required substances for glycolysis and oxidative phosphorylation and affects the homeostasis of carbohydrate,fat and protein metabolism to induce the chemoresistance of tumor cells. Combination of chemotherapeutic agents with inhibitors specific to different components of glutamine metabolic pathway has obtained favorable clinical results on various tumors. Glutamine metabolic pathway plays a role in drug resistance of tumor cells in various ways. Firstly,the dynamic change of glutamine transporters can directly affect intracellular glutamine content thereby causing drug resistance; secondly,tumor stromal cells including adipocyte,fibroblast and metabolite from tumor microenvironment would give rise to immune-mediated drug resistance; thirdly,the expression and activity of key enzymes in glutamine metabolism also has a critical role in drug resistance of tumors. This article reviews the effects of glutamine metabolic pathway in the development of tumor chemoresistance,in terms of transporters,tumor microenvironment and metabolic enzymes,to provide insight for improving the therapeutic efficacy for drug-resistant tumors.
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Glutamine/metabolism*
;
Glycolysis
;
Humans
;
Neoplasms/drug therapy*
;
Oxidative Phosphorylation
;
Tumor Microenvironment
8.Effects of aerobic exercise and glutamine on oxidative stress and expression of related factors in type 2 diabetic rats.
Chinese Journal of Applied Physiology 2019;35(2):150-154
OBJECTIVE:
To investigate the effects of aerobic exercise and glutamine (Gln) on anti-oxidative stress and inflammatory factors in type 2 diabetes mellitus (T2MD) rats.
METHODS:
Diabetic rat model was induced by streptozotocin (STZ). Fifty 6-week old male SD rats were randomly divided into 5 groups (n=10), including quiet control group (N), diabetes control group (D), diabetic aerobic exercise group (DE), diabetic glutamine group (DG) and diabetic aerobic exercise glutamine group (DEG). After 6 weeks, the related indicators of glucose and lipid metabolism, anti-oxidative stress and inflammatory factors in diabetic rats were detected, and the possible mechanism affecting inflammatory response were explored.
RESULTS:
Compared with group N, the levels of serum malondialdehyde(MDA), blood glucose, total cholesterol(TC), triglyceride(TG), insulin, leptin and tumor necrosis factor-α(TNF-α) in group D were increased significantly (P<0.01). Compared with group D, serum levels of MDA, blood glucose, TC, TG, insulin, leptin and TNF-α in three intervention groups were decreased significantly, while the levels of SOD, GSH-Px and adiponectin were increased, and the combined effect was more obvious (P<0.01).
CONCLUSION
Both aerobic exercise and Gln can relieve the glucose and lipid metabolism and disturbance, oxidative stress injury and inflammation in diabetic rats.
Animals
;
Blood Glucose
;
analysis
;
Diabetes Mellitus, Experimental
;
Diabetes Mellitus, Type 2
;
therapy
;
Glutamine
;
pharmacology
;
Leptin
;
blood
;
Lipid Metabolism
;
Lipids
;
blood
;
Male
;
Malondialdehyde
;
blood
;
Oxidative Stress
;
Physical Conditioning, Animal
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
9.Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model.
Yingqian ZHAO ; Qiang WANG ; Yuan WANG ; Jie LI ; Gang LU ; Zhibin LIU
Environmental Health and Preventive Medicine 2019;24(1):4-4
BACKGROUND:
Parkinson's disease is a neurodegenerative disorder, and recent studies suggested that oxidative stress contributes to the degeneration of dopamine cell in Parkinson's disease. Glutamine also has a positive role in reducing oxidative stress damage. In this study, we hypothesized that glutamine offers protection against oxidative stress injury in 1-methyl-4-phenylpyridinium (MPP)-induced Parkinson's disease cell model.
METHODS:
MPP was used to induce PD models in PC12 cells and classified into control, M0 (MPP), G0 (glutamine), and M0+G0 groups. CCK-8 and AO/EB staining assays were used to examine cell proliferation and apoptosis, respectively. Western blotting was applied to examine the protein expression of PI3K, P-Akt, Akt, P-mTOR, and mTOR.
RESULTS:
We showed that glutamine suppressed cytotoxicity induced by MPP in PC12 cells. MPP decreased the superoxide dismutase and glutathione peroxidase activity and increased the malondialdehyde content, which were restored by glutamine. Moreover, MPP increased the expression of PI3K, P-Akt, Akt, P-mTOR, and mTOR, which were inhibited by glutamine. And the antioxidant capacity of glutamine on PC12 cells could be improved by LY294002 and inhibited by IGF-1.
CONCLUSION
These results suggest that glutamine strengthens the antioxidant capacity in PC12 cells induced by MPP through inhibiting the activation of the PI3K/Akt signaling pathway. The effects of glutamine should be investigated and the protective mechanism of glutamine in PD must be explored in future studies.
1-Methyl-4-phenylpyridinium
;
administration & dosage
;
Analysis of Variance
;
Animals
;
Cell Culture Techniques
;
Disease Models, Animal
;
Glutamine
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Parkinson Disease
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Protective Agents
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
10.Effects of calcium-binding sites in the S2-S3 loop on human and Nematostella vectensis TRPM2 channel gating processes.
Yu-Huan LUO ; Xia-Fei YU ; Cheng MA ; Fan YANG ; Wei YANG
Journal of Zhejiang University. Science. B 2019;20(12):972-982
As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2 (TRPM2) channel from Nematostella vectensis (nvTRPM2). This identified a calcium-binding site in the S2-S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2 (hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvTRPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2-S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues (glutamate and aspartate) substantially decreased the currents of nvTRPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues (glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2-S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2-S3 loop of TRPM2 on the TRPM2 gating process.
Animals
;
Asparagine/physiology*
;
Binding Sites
;
Calcium/metabolism*
;
Glutamine/physiology*
;
HEK293 Cells
;
Humans
;
Ion Channel Gating/physiology*
;
Sea Anemones
;
TRPM Cation Channels/physiology*

Result Analysis
Print
Save
E-mail