1.Electroacupuncture improves myocardial injury in rats with acute myocardial ischemia by inhibiting HPA axis hyperactivity via modulating hippocampal glutamatergic system.
Kun WANG ; Haiyan ZUO ; Jiaojiao ZHANG ; Xin WU ; Wenhui WANG ; Shengbing WU ; Meiqi ZHOU
Journal of Southern Medical University 2025;45(8):1599-1607
OBJECTIVES:
To clarify the role of hippocampal glutamate system in regulating HPA axis in mediating the effect of electroacupuncture (EA) at the heart meridian for improving myocardial injury in rats with acute myocardial ischemia (AMI).
METHODS:
Male SD rats were randomized into sham-operated group, AMI group, EA group, and L-glutamic acid+EA group (n=9). Rat models of AMI were established by left descending coronary artery ligation, and EA was applied at the "Shenmen-Tongli" segment; the rats in L-glutamic acid+EA group were subjected to microinjection of L-glutamic acid into the bilateral hippocampus prior to AMI modeling and EA treatment. Cardiac functions of the rats were evaluated using echocardiography, and ECG and heart rate variation (HRV) were analyzed using PowerLab and LabChart. Pathological changes in the myocardial tissue was examined using HE staining, and serum levels of myocardial enzymes were detected with ELISA. Myocardial expressions of TH and GAP43 were detected with immunohistochemistry, and colocalization of VGLUT1, VGLUT2 and c-fos were observed using immunofluorescence staining; the expressions of VGLUT1, VGLUT2, NMDAR1 and NMDAR2B were detected using Western blotting.
RESULTS:
The rat models of AMI showed significantly decreased LVEF and LVFS and increased serum levels of myocardial enzymes in positive correlation with the HPA axis. Numerous TH- and GAP43-positive cells were observed in the hippocampus, where the expressions of NE and E, neurons colabeled with VGLUT1, VGLUT2 and c-fos, and expressions of VGLUT1, VGLUT2, NMDAR1, NMDAR2B and Glu increased significantly. All these changes were significantly improved by interventions with EA as compared with those in AMI and L-Glutamate+EA groups.
CONCLUSIONS
In rats with AMI, EA at the heart meridian can regulate excessive glutamate release in the hippocampus, thereby inhibiting HPA axis hyperactivity and reducing sympathetic nerve activity to protect the myocardial tissue.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Hippocampus/metabolism*
;
Rats
;
Glutamic Acid/metabolism*
;
Myocardial Ischemia/physiopathology*
;
Hypothalamo-Hypophyseal System/physiopathology*
;
Pituitary-Adrenal System/physiopathology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
2.Ziwuliuzhu acupuncture modulates Glu/GABA‑Gln metabolic loop abnormalities in insomniac rats.
Jiarong XU ; Ao HUANG ; Zhikai DING ; Yu BAO ; Canghuan ZHAO ; Wenzhi CAI
Journal of Southern Medical University 2025;45(8):1616-1624
OBJECTIVES:
To investigate the therapeutic effect of Ziwuliuzhu acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
METHODS:
Forty male SD rats were randomly assigned to control group, model group, Najia group and Nazi group (n=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test. After modeling, the rats in Najia and Nazi groups received acupuncture for 7 days at specifically chosen sets of acupoints based on the Ziwuliuzhu rationale in traditional Chinese medicine. Pathological changes in the hypothalamic tissue of the rats were examined with HE staining, and the levels of Glu and GABA in the hypothalamus were determined with high-performance liquid chromatography (HPLC)-mass spectrometry (MS)/MS. Immunohistochemistry was used to detect the expressions of GABAA receptors (GABAARs) in the hypothalamus, and the expression levels of glutamate decarboxylase (GAD65/67) and glutamine synthetase (GS) were determined with Western blotting.
RESULTS:
Compared with the model group, the rats in Najia and Nazi groups exhibited decreased Glu levels and GABAA receptor expression and increased GABA levels with a decreased Glu/GABA ratio in the hypothalamus. Ziwuliuzhu acupuncture significantly increased the protein expressions of GAD65 and GAD67 and lowered the expression of GS in the hypothalamus in the rat models of insomnia.
CONCLUSIONS
Ziwuliuzhu acupuncture produces sedative and hypnotic effects in rat models of insomnia possibly by regulating Glu and GABA-Gln metabolism to restore the excitatory/inhibitory balance between Glu and GABA.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep Initiation and Maintenance Disorders/therapy*
;
Glutamine/metabolism*
;
Glutamic Acid/metabolism*
;
Acupuncture Therapy
;
Hypothalamus/metabolism*
;
Receptors, GABA-A/metabolism*
;
Acupuncture Points
3.Upregulation of NR2A in Glutamatergic VTA Neurons Contributes to Chronic Visceral Pain in Male Mice.
Meng-Ge LI ; Shu-Ting QU ; Yang YU ; Zhenhua XU ; Fu-Chao ZHANG ; Yong-Chang LI ; Rong GAO ; Guang-Yin XU
Neuroscience Bulletin 2025;41(12):2113-2126
Chronic visceral pain is a persistent and debilitating condition arising from dysfunction or sensitization of the visceral organs and their associated nervous pathways. Increasing evidence suggests that imbalances in central nervous system function play an essential role in the progression of visceral pain, but the exact mechanisms underlying the neural circuitry and molecular targets remain largely unexplored. In the present study, the ventral tegmental area (VTA) was shown to mediate visceral pain in mice. Visceral pain stimulation increased c-Fos expression and Ca2+ activity of glutamatergic VTA neurons, and optogenetic modulation of glutamatergic VTA neurons altered visceral pain. In particular, the upregulation of NMDA receptor 2A (NR2A) subunits within the VTA resulted in visceral pain in mice. Administration of a selective NR2A inhibitor decreased the number of visceral pain-induced c-Fos positive neurons and attenuated visceral pain. Pharmacology combined with chemogenetics further demonstrated that glutamatergic VTA neurons regulated visceral pain behaviors based on NR2A. In summary, our findings demonstrated that the upregulation of NR2A in glutamatergic VTA neurons plays a critical role in visceral pain. These insights provide a foundation for further comprehension of the neural circuits and molecular targets involved in chronic visceral pain and may pave the way for targeted therapies in chronic visceral pain.
Animals
;
Male
;
Visceral Pain/metabolism*
;
Up-Regulation/physiology*
;
Ventral Tegmental Area/metabolism*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Neurons/drug effects*
;
Mice, Inbred C57BL
;
Mice
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Chronic Pain/metabolism*
;
Glutamic Acid/metabolism*
4.The Glutamate-gated Chloride Channel Facilitates Sleep by Enhancing the Excitability of Two Pairs of Neurons in the Ventral Nerve Cord of Drosophila.
Yaqian FAN ; Yao TIAN ; Junhai HAN
Neuroscience Bulletin 2025;41(10):1729-1742
Sleep, an essential and evolutionarily conserved behavior, is regulated by numerous neurotransmitter systems. In mammals, glutamate serves as the wake-promoting signaling agent, whereas in Drosophila, it functions as the sleep-promoting signal. However, the precise molecular and cellular mechanisms through which glutamate promotes sleep remain elusive. Our study reveals that disruption of glutamate signaling significantly diminishes nocturnal sleep, and a neural cell-specific knockdown of the glutamate-gated chloride channel (GluClα) markedly reduces nocturnal sleep. We identified two pairs of neurons in the ventral nerve cord (VNC) that receive glutamate signaling input, and the GluClα derived from these neurons is crucial for sleep promotion. Furthermore, we demonstrated that GluClα mediates the glutamate-gated inhibitory input to these VNC neurons, thereby promoting sleep. Our findings elucidate that GluClα enhances nocturnal sleep by mediating the glutamate-gated inhibitory input to two pairs of VNC neurons, providing insights into the mechanism of sleep promotion in Drosophila.
Animals
;
Sleep/physiology*
;
Neurons/metabolism*
;
Chloride Channels/genetics*
;
Drosophila Proteins/genetics*
;
Drosophila
;
Glutamic Acid/metabolism*
;
Animals, Genetically Modified
5.Intrinsic Functional Connectivity Associated with γ‑Aminobutyric Acid and Glutamate/Glutamine in the Lateral Prefrontal Cortex and Internalizing Psychopathology in Adolescents.
Kai WANG ; Harry R SMOLKER ; Mark S BROWN ; Hannah R SNYDER ; Yu CHENG ; Benjamin L HANKIN ; Marie T BANICH
Neuroscience Bulletin 2025;41(9):1553-1569
In this study, we systematically tested the hypothesis that during the critical developmental period of adolescence, on a macro scale, the concentrations of major excitatory and inhibitory neurotransmitters (glutamate/glutamine and γ‑aminobutyric acid [GABA]) in the dorsal and ventral lateral prefrontal cortex are associated with the brain's functional connectivity and an individual's psychopathology. Neurotransmitters were measured via magnetic resonance spectroscopy while functional connectivity was measured with resting-state fMRI (n = 121). Seed-based and network-based analyses revealed associations of neurotransmitter concentrations and functional connectivities between regions/networks that are connected to prefrontal cortices via structural connections that are thought to be under dynamic development during adolescence. These regions tend to be boundary areas between functional networks. Furthermore, several connectivities were found to be associated with individual's levels of internalizing psychopathology. These findings provide insights into specific neurochemical mechanisms underlying the brain's macroscale functional organization, its development during adolescence, and its potential associations with symptoms associated with internalizing psychopathology.
Humans
;
Adolescent
;
Glutamic Acid/metabolism*
;
Prefrontal Cortex/diagnostic imaging*
;
Male
;
Glutamine/metabolism*
;
Female
;
gamma-Aminobutyric Acid/metabolism*
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Nerve Net/metabolism*
;
Neural Pathways
;
Connectome
6.Research progress of neurotransmitters in lung injury after traumatic brain injury.
Le CAO ; Haikun ZHANG ; Jinxiang YU ; Pengcheng MA ; Lifeng JIA ; Tao ZHAO
Chinese Critical Care Medicine 2025;37(10):982-988
Traumatic brain injury (TBI), as a significant central nervous system damage disease with high frequency in the world, leads to a huge number of patients with impaired health and lower quality of life every year. Lung injury is a common and dangerous consequence, which dramatically raises the mortality of patients. Discovering the pathophysiology of lung injury after TBI and discovering viable therapeutic targets has become an important need for clinical diagnosis and therapy. Neurotransmitters, as the fundamental chemical agents of the nervous system for signal transmission, not only govern neuronal activity and apoptosis in TBI but also significantly influence the pathophysiological mechanisms of lung injury subsequent to TBI. The imbalance is intricately linked to the onset and progression of lung damage. This paper systematically reviews the clinical characteristics and predominant pathogenesis of lung injury following TBI, emphasizing the role of key neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA), norepinephrine (NE), dopamine (DA), and acetylcholine (ACh), in lung injury post-TBI. It examines their influence on inflammatory response, vascular permeability, and pulmonary circulation function. Additionally, the paper evaluates the research advancements and potential applications of targeted therapeutic strategies for various neurotransmitter systems, such as receptor antagonists, transporter inhibitors, and neurotransmitter analogues. This research aims to offer a theoretical framework for clarifying the neural regulatory mechanisms of lung injury following TBI and to establish a basis for the development of novel therapeutic strategies and enhancement of the prognosis of the patients.
Humans
;
Brain Injuries, Traumatic/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Lung Injury/metabolism*
;
gamma-Aminobutyric Acid/metabolism*
;
Glutamic Acid/metabolism*
;
Norepinephrine/metabolism*
;
Dopamine/metabolism*
;
Acetylcholine/metabolism*
7.Engineering of CmpLs enhances L-glutamate production of Corynebacterium glutamicum.
Xingtao ZUO ; Shasha ZHONG ; Ningyun CAI ; Tuo SHI ; Zhidan ZHANG ; Yuantao LIU ; Jiao LIU ; Depei WANG ; Jiuzhou CHEN ; Ping ZHENG
Chinese Journal of Biotechnology 2025;41(1):271-287
The efficient production of L-glutamate is dependent on the product's rapid efflux, hence researchers have recently concentrated on artificially modifying its transport system and cell membrane wall structure. Considering the unique composition and structure of the cell wall of Corynebacterium glutamicum, we investigated the effects of CmpLs on L-glutamate synthesis and transport in SCgGC7, a constitutive L-glutamate efflux strain. First, the knockout strains of CmpLs were constructed, and it was confirmed that the deletion of CmpL1 and CmpL4 significantly improved the performance of L-glutamate producers. Next, temperature-sensitive L-glutamate fermentation with the CmpL1 and CmpL4 knockout strains were carried out in 5 L bioreactors, where the knockout strains showcased temperature-sensitive characteristics and enhanced capacities for L-glutamate production under high temperatures. Notably, the CmpL1 knockout strain outperformed the control strain in terms of L-glutamate production, showing production and yield increases of 69.2% and 55.3%, respectively. Finally, the intracellular and extracellular metabolites collected at the end of the fermentation process were analyzed. The modification of CmpLs greatly improved the L-glutamate excretion and metabolic flux for both L-glutamate production and transport. Additionally, the CmpL1 knockout strain showed decreased accumulation of downstream metabolites of L-glutamate and intermediate metabolites of tricarboxylic acid (TCA) cycle, which were consistent with its high L-glutamate biosynthesis capacity. In addition to offering an ideal target for improving the stability and performance of the industrial strains for L-glutamate production, the functional complementarity and redundancy of CmpLs provide a novel target and method for improving the transport of other metabolites by modification of the cell membrane and cell wall structures in C. glutamicum.
Corynebacterium glutamicum/genetics*
;
Glutamic Acid/biosynthesis*
;
Fermentation
;
Metabolic Engineering
;
Bacterial Proteins/metabolism*
;
Bioreactors/microbiology*
;
Gene Knockout Techniques
8.Glutamatergic Circuits in the Pedunculopontine Nucleus Modulate Multiple Motor Functions.
Yanwang HUANG ; Shangyi WANG ; Qingxiu WANG ; Chaowen ZHENG ; Feng YANG ; Lei WEI ; Xintong ZHOU ; Zuoren WANG
Neuroscience Bulletin 2024;40(11):1713-1731
The functional role of glutamatergic (vGluT2) neurons in the pedunculopontine nucleus (PPN) in modulating motor activity remains controversial. Here, we demonstrated that the activity of vGluT2 neurons in the rostral PPN is correlated with locomotion and ipsilateral head-turning. Beyond these motor functions, we found that these rostral PPN-vGluT2 neurons remarkably respond to salient stimuli. Furthermore, we systematically traced the upstream and downstream projections of these neurons and identified two downstream projections from these neurons to the caudal pontine reticular nucleus/anterior gigantocellular reticular nucleus (PnC/GiA) and the zona incerta (ZI). Our findings indicate that the projections to the PnC/GiA inhibit movement, consistent with 'pause-and-play' behavior, whereas those to the ZI promote locomotion, and others respond to a new 'pause-switch-play' pattern. Collectively, these findings elucidate the multifaceted influence of the PPN on motor functions and provide a robust theoretical framework for understanding its physiological and potential therapeutic implications.
Pedunculopontine Tegmental Nucleus/physiology*
;
Animals
;
Neural Pathways/physiology*
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Locomotion/physiology*
;
Glutamic Acid/metabolism*
;
Neurons/physiology*
;
Male
;
Mice
;
Motor Activity/physiology*
;
Zona Incerta/physiology*
9.Yigong Powder regulates CXCL12/CXCR4 signaling to reduce glutamate release and prevent cognitive decline in mouse model of aging.
Jiang-Ping WEI ; Zi-Xuan ZHAO ; Jing ZENG ; Fang-Hong SHANG ; Lei HUA ; Yong YANG ; Xiao-Mei ZHANG
China Journal of Chinese Materia Medica 2023;48(23):6483-6491
This study aims to explore the effect of preventive administration of Yigong Powder on the learning and memory abilities of the mouse model of aging induced by D-galactose and decipher the underlying mechanism, so as to provide a basis for the application of Yigong Powder in the prevention and treatment of cognitive decline. Forty KM mice were randomized into control, model, donepezil(1.5 mg·kg~(-1)), and high-dose(7.5 g·kg~(-1)) and low-dose(3.75 g·kg~(-1)) Yigong Powder groups. The mice in other groups except the control group were injected with D-galactose(200 g·kg~(-1)) at the back of the neck for the modeling of aging. At the same time, the mice were administrated with corresponding drugs by gavage for one month. Morris water maze was used to examine the learning and memory abilities of the mice. Hematoxylin-eosin staining was employed to observe the pathological and morphological changes of the hippocampus. The immunofluorescence assay was employed to detect the expression of ionized calcium-binding adapter molecule 1(IBA1), glial fibrillary acidic protein(GFAP), chemokine C-X-C-motif ligand 12(CXCL12), chemokine C-X-C-motif receptor 4(CXCR4) in the hippocampus and observe the positional relationship between IBA1, GFAP, and CXCR4. Western blot was employed to determine the protein levels of extracellular regulated kinase(ERK), p-ERK, and tumor necrosis factor receptor 1(TNFR1). Enzyme-linked immunosorbent assay was employed to measure the levels of glutamate and tumor necrosis factor(TNF-α) in the brain tissue and the level of TNF-α in the serum and spleen. Yigong Powder significantly shortened the escape latency, increased the times crossing platforms, and prolonged the cumulative time in quadrants of the aging mice. It alleviated the nerve cell disarrangement, increased intercellular space, and cell degeneration or death in the hippocampus and reduced the pathology score of the damaged nerve. Moreover, Yigong Powder reduced the positive area of IBA1 and GFAP, reduced the levels of TNF-α in the brain tissue, serum, and spleen, and decreased spleen index. Furthermore, Yigong Powder decreased the average fluorescence intensity of CXCL12 and CXCR4, reduced CXCR4-positive astrocytes and microglia, down-regulated the protein levels of p-ERK/ERK and TNFR1, and lowered the level of glutamate in the brain tissue. This study showed that the preventive administration of Yigong Powder can ameliorate the learning and memory decline of the D-galactose-induced aging mice by regulating the immune function of the spleen and the CXCL12/CXCR4 signaling in the brain to reduce glutamate release. However, the mechanism of Yigong San in preventing and treating dementia via regulating spleen and stomach function remains to be studied.
Mice
;
Animals
;
Powders
;
Receptors, Tumor Necrosis Factor, Type I
;
Glutamic Acid
;
Tumor Necrosis Factor-alpha/metabolism*
;
Galactose/adverse effects*
;
Disease Models, Animal
;
Cognitive Dysfunction/prevention & control*
;
Chemokines
;
Drugs, Chinese Herbal
10.Sexual Dimorphism of Inputs to the Lateral Habenula in Mice.
Xue LIU ; Hongren HUANG ; Yulin ZHANG ; Liping WANG ; Feng WANG
Neuroscience Bulletin 2022;38(12):1439-1456
The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.
Animals
;
Male
;
Mice
;
Glutamic Acid/metabolism*
;
Habenula/metabolism*
;
Hypothalamus/metabolism*
;
Neural Pathways/physiology*
;
Sex Characteristics
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Female

Result Analysis
Print
Save
E-mail