1.Metabolic engineering of Escherichia coli for de novo synthesis of L-theanine.
Siquan ZHOU ; Di ZHANG ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3459-3472
L-theanine is an important natural non-protein amino acid that is widely used in food and medicine. Although in previous studies, a microbial fermentation method for L-theanine without the addition of ethylamine has been developed, the conversion rate of this process needs to be further improved. In this study, we constructed a de novo synthesis pathway of L-theanine with glucose as the substrate. First, an in vitro transformation pathway containing ω-transaminase (TA) and γ-glutamylmethylamide synthetase (GMAS) was designed, optimized, and introduced into the chassis strain Escherichia coli K12 W3110 to achieve de novo synthesis of L-theanine. To improve the synthesis efficiency through metabolic engineering, we increased the copies of the GMAS gene gams and the TA gene spuC and enhanced the expression of the aldehyde dehydrogenase gene eutE to provide sufficient acetaldehyde substrate, knocked out the lactate dehydrogenase gene ldhA and the pyruvate formate lyase gene pflB to block bypass metabolism, and introduced the alanine dehydrogenase gene alD to recycle alanine. Furthermore, we over-expressed the phosphoenolpyruvate carboxylase gene ppc to enhance the carbon flux of the TCA cycle, knocked out the succinyl-CoA synthase gene sucCD to reduce the loss of downstream flux of TCA, and integrated the glutamate dehydrogenase gene gdh to enhance the supply of L-glutamate. Finally, the polyphosphate kinase gene ppk was introduced to the ATP cycle, which enhanced the energy supply in L-theanine production. The recombinant strain Tea11 produced 22.60 g/L L-theanine in a 5 L fermenter in 28 h, with a conversion rate of 41.71%. This synthetic pathway in this study balanced the relationship between the supply of ethylamine and the production of theanine, providing a new idea for metabolic engineering of microorganisms to produce L-theanine.
Glutamates/biosynthesis*
;
Metabolic Engineering/methods*
;
Escherichia coli/genetics*
;
Fermentation
;
Transaminases/metabolism*
;
Amide Synthases/metabolism*
;
Glucose/metabolism*
2.Construction of recombinant strains co-expressing PPK and GMAS for the synthesis of L-theanine.
Chinese Journal of Biotechnology 2016;32(12):1745-1749
Recombinant strains expressing enzymes for ATP regeneration and L-theanine production were constructed and used for the synthesis of L-theanine. The ppk gene encoding polyphosphate kinase (PPK) from Rhodobacter sphaeroides and gmas gene encoding γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays were synthesized, and two recombinant plasmids, pETDuet-ppk+gmas and pET21a-ppk+gmas were constructed for co-expression of PPK and GMAS in Escherichia coli BL21(DE3). SDS-PAGE analysis showed that PPK and GMAS were overexpressed in soluble form in both recombinant strains. GMAS-PPK obtained from the recombinant strain containing pET21a-ppk+gmas was more efficient to synthesize L-theanine. After 24 h at 37 ℃ and pH at 7.0, 86.0% yield of L-theanine was achieved with catalytic amount of ATP. This study extends the application of enzymatic ATP regeneration system. In addition, it provides an efficient method for the biosynthesis of L-theanine.
Carbon-Nitrogen Ligases
;
genetics
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
genetics
;
Glutamates
;
biosynthesis
;
Ligases
;
Phosphotransferases (Phosphate Group Acceptor)
;
genetics

Result Analysis
Print
Save
E-mail