1.Factors influencing bilirubin elevation and its correlation with UGT1A1 gene polymorphism in the early postoperative period of transjugular intrahepatic portosystemic shunt.
Bi Feng ZHANG ; Jian FANG ; Zhi Qiang ZHANG ; Xiu Lan AO ; Lei XIA ; Hai Cong WU ; Shi An ZHANG ; Zhi Xian WU ; Dong Liang LI
Chinese Journal of Hepatology 2023;31(5):524-531
Objective: To investigate the factors influencing total bilirubin elevation and its correlation with UGT1A1 gene polymorphism in the early postoperative period of transjugular intrahepatic portosystemic shunt (TIPS). Methods: 104 cases with portal hypertension and esophageal variceal hemorrhage (EVB) treated with elective TIPS treatment were selected as the study subjects and were divided into a bilirubin-elevated group and a normal bilirubin group according to the total bilirubin elevation level during the early postoperative period. Univariate analysis and logistic regression were used to analyze the factors influencing total bilirubin elevation in the early postoperative period. PCR amplification and first-generation sequencing technology were used to detect the polymorphic loci of the UGT1A1 gene promoter TATA box, enhancer c.-3279 T > G, c.211G > A, and c.686C > A. Logistic regression was used to analyze the correlation of four locus alleles and genotypes with elevated total bilirubin in the early postoperative period. Results: Among the 104 cases, 47 patients were in the bilirubin elevated group, including 35 males (74.5%) and 12 females (25.5%), aged (50.72 ± 12.56) years. There were 57 cases in the normal bilirubin group, including 42 males (73.7%) and 15 females (26.3%), aged (51.63 ± 11.10) years. There was no statistically significant difference in age (t = -0.391, P = 0.697) and gender (χ(2) = 0.008, P = 0.928) between the two groups of patients. Univariate analysis revealed that preoperative alanine transaminase (ALT) level (χ(2) = 5.954, P = 0.015), total bilirubin level (χ(2) = 16.638, P < 0.001), MELD score (χ(2) = 10.054, P = 0.018), Child-Pugh score (χ(2) = 6.844, P = 0.022), and postoperative portal vein branch development (χ(2) = 6.738, P = 0.034) were statistically significantly different between the two groups. Logistic regression analysis showed that preoperative ALT level, total bilirubin level, and portal vein branch development after TIPS were correlated with the elevated total bilirubin in the early postoperative period. The polymorphism of the c.211G > A locus of the UGT1A1 gene correlation had elevated total bilirubin in the early postoperative period of TIPS. The risk of elevated total bilirubin was increased in the population carrying allele A (P = 0.001, OR = 4.049) in the early postoperative period. Allelic polymorphisms in the TATA box promoter region and enhancer c.-3279 T > G and c.686C > A had no statistically significant difference between the bilirubin-elevated group and the normal bilirubin group. Conclusion: The preoperative ALT level, total bilirubin level, and portal vein branch development are correlated with the elevated total bilirubin in early postoperative patients. The polymorphisms of the UGT1A1 gene and enhancer c.211G > A are correlated with the occurrence of elevated total bilirubin in the early postoperative period of TIPS. Allele A carrier may have a higher risk of elevated total bilirubin in the early postoperative period.
Female
;
Humans
;
Male
;
Bilirubin
;
Esophageal and Gastric Varices
;
Gastrointestinal Hemorrhage/surgery*
;
Portasystemic Shunt, Transjugular Intrahepatic
;
Postoperative Period
;
Retrospective Studies
;
Treatment Outcome
;
Adult
;
Middle Aged
;
Glucuronosyltransferase/genetics*
2.UGT1A1 gene mutations in Chinese Dong neonates in Sanjiang, Guangxi.
Xuan YAO ; Dan-Ni ZHONG ; Yun-Cong PENG
Chinese Journal of Contemporary Pediatrics 2022;24(7):792-796
OBJECTIVES:
To study the characteristics of UGT1A1 gene mutations in Dong neonates in Sanjiang County of Liuzhou and its association with the pathogenesis of hyperbilirubinemia in Dong neonates.
METHODS:
A prospective analysis was performed on 84 neonates who were diagnosed with unexplained hyperbilirubinemia in the Department of Neonatology, Sanjiang County People's Hospital, from January 2021 to January 2022. Sixty healthy neonates born during the same period were enrolled as the control group. Peripheral blood genomic DNA was extracted for both groups, and UGT1A1 exon 1 was amplified by PCR and sequenced.
RESULTS:
In the case group, 33 neonates were found to have G71R missense mutation, with a mutation rate of 39%. The case group had a significantly higher frequency of A allele than the healthy control group (21% vs 10%, P<0.05). The risk of hyperbilirubinemia in Dong neonates carrying G71R missense mutation was 2.588 times as high as that in healthy neonates carrying wild-type UGT1A1 gene (P<0.05). Hardy-Weinberg equilibrium testing showed that the UGT1A1 G71R locus was in genetic equilibrium in both groups (P>0.05).
CONCLUSIONS
UGT1A1 G71R mutation is a high-frequency gene mutation type in Dong neonates in Sanjiang County, and G71R missense mutation is associated with hyperbilirubinemia in Dong neonates.
Asians/genetics*
;
China
;
Exons
;
Glucuronosyltransferase/genetics*
;
Humans
;
Hyperbilirubinemia, Neonatal/genetics*
;
Infant, Newborn
;
Mutation
3.Characteristics and Clinical Implication of UGT1A1 Heterozygous Mutation in Tumor.
Qian LI ; Tao SUN ; Hua ZHANG ; Wei LIU ; Yu XIAO ; Hongqi SUN ; Wencheng YIN ; Yanhong YAO ; Yangchun GU ; Yan'e LIU ; Fumei YI ; Qiqi WANG ; Jinyu YU ; Baoshan CAO ; Li LIANG
Chinese Journal of Lung Cancer 2022;25(3):137-146
BACKGROUND:
The literature recommends that reduced dosage of CPT-11 should be applied in patients with UGT1A1 homozygous mutations, but the impact of UGT1A1 heterozygous mutations on the adverse reactions of CPT-11 is still not fully clear.
METHODS:
A total of 107 patients with UGT1A1 heterozygous mutation or wild-type, who were treated with CPT-11 from January 2018 to September 2021 in Peking University Third Hospital, were retrospectively enrolled. The adverse reaction spectra of patients with UGT1A1*6 and UGT1A1*28 mutations were analyzed. Adverse reactions were evaluated according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) 5.0. The efficacy was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The genotypes of UGT1A1*6 and UGT1A1*28 were detected by digital fluorescence molecular hybridization.
RESULTS:
There were 43 patients with UGT1A1*6 heterozygous mutation, 26 patients with UGT1A1*28 heterozygous mutation, 8 patients with UGT1A1*6 and UGT1A1*28 double heterozygous mutations, 61 patients with heterozygous mutation at any gene locus of UGT1A1*6 and UGT1A1*28. Logistic regression analysis showed that the presence or absence of vomiting (P=0.013) and mucositis (P=0.005) was significantly correlated with heterozygous mutation of UGT1A1*28, and the severity of vomiting (P<0.001) and neutropenia (P=0.021) were significantly correlated with heterozygous mutation of UGT1A1*6. In colorectal cancer, UGT1A1*6 was significantly correlated to diarrhea (P=0.005), and the other adverse reactions spectrum was similar to that of the whole patient cohort, and efficacy and prognosis were similar between patients with different genotypes and patients treated with reduced CPT-11 dosage or not.
CONCLUSIONS
In clinical use, heterozygous mutations of UGT1A1*6 and UGT1A1*28 are related to the risk and severity of vomiting, diarrhea, neutropenia and mucositis in patients with Pan-tumor and colorectal cancer post CPT-11 therpy. In colorectal cancer, UGT1A1*6 is significantly related to diarrhea post CPT-11 use, efficacy and prognosis is not affected by various genotypes or CPT-11 dosage reduction.
Camptothecin/therapeutic use*
;
Glucuronosyltransferase/genetics*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Mutation
;
Polymorphism, Genetic
;
Retrospective Studies
4.Study on metabolic dynamics,metabolic enzyme phenotype and species difference of hepatic and intestinal microsome of psoralidin.
Zi-Fei QIN ; Bei-Bei ZHANG ; Han XING ; Pei-le WANG ; Jing YANG ; Xiao-Jian ZHANG ; Zhi-Hong YAO ; Xin-Sheng YAO
China Journal of Chinese Materia Medica 2021;46(13):3410-3421
This study aims to investigate metabolic activities of psoralidin in human liver microsomes( HLM) and intestinal microsomes( HIM),and to identify cytochrome P450 enzymes( CYPs) and UDP-glucuronosyl transferases( UGTs) involved in psoralidin metabolism as well as species differences in the in vitro metabolism of psoralen. First,after incubation serial of psoralidin solutions with nicotinamide adenine dinucleotide phosphate( NADPH) or uridine 5'-diphosphate-glucuronic acid( UDPGA)-supplemented HLM or HIM,two oxidic products( M1 and M2) and two conjugated glucuronides( G1 and G2) were produced in HLM-mediated incubation system,while only M1 and G1 were detected in HIM-supplemented system. The CLintfor M1 in HLM and HIM were 104. 3,and57. 6 μL·min~(-1)·mg~(-1),respectively,while those for G1 were 543. 3,and 75. 9 μL·min~(-1)·mg~(-1),respectively. Furthermore,reaction phenotyping was performed to identify the main contributors to psoralidin metabolism after incubation of psoralidin with NADPH-supplemented twelve CYP isozymes( or UDPGA-supplemented twelve UGT enzymes),respectively. The results showed that CYP1 A1( 39. 5 μL·min~(-1)·mg~(-1)),CYP2 C8( 88. 0 μL·min~(-1)·mg~(-1)),CYP2 C19( 166. 7 μL·min~(-1)·mg~(-1)),and CYP2 D6( 9. 1 μL·min~(-1)·mg~(-1)) were identified as the main CYP isoforms for M1,whereas CYP2 C19( 42. 0 μL·min~(-1)·mg~(-1)) participated more in producing M2. In addition,UGT1 A1( 1 184. 4 μL·min~(-1)·mg~(-1)),UGT1 A7( 922. 8 μL·min~(-1)·mg~(-1)),UGT1 A8( 133. 0 μL·min~(-1)·mg~(-1)),UGT1 A9( 348. 6 μL·min~(-1)·mg~(-1)) and UGT2 B7( 118. 7 μL·min~(-1)·mg~(-1)) played important roles in the generation of G1,while UGT1 A9( 111. 3 μL·min~(-1)·mg~(-1)) was regarded as the key UGT isozyme for G2. Moreover,different concentrations of psoralidin were incubated with monkey liver microsomes( MkLM),rat liver microsomes( RLM),mice liver microsomes( MLM),dog liver microsomes( DLM) and mini-pig liver microsomes( MpLM),respectively. The obtained CLintwere used to evaluate the species differences.Phase Ⅰ metabolism and glucuronidation of psoralidinby liver microsomes showed significant species differences. In general,psoralidin underwent efficient hepatic and intestinal metabolisms. CYP1 A1,CYP2 C8,CYP2 C19,CYP2 D6 and UGT1 A1,UGT1 A7,UGT1 A8,UGT1 A9,UGT2 B7 were identified as the main contributors responsible for phase Ⅰ metabolism and glucuronidation,respectively. Rat and mini-pig were considered as the appropriate model animals to investigate phase Ⅰ metabolism and glucuronidation,respectively.
Animals
;
Benzofurans
;
Coumarins
;
Dogs
;
Glucuronides
;
Glucuronosyltransferase/metabolism*
;
Kinetics
;
Mice
;
Microsomes, Liver/metabolism*
;
Phenotype
;
Rats
;
Species Specificity
;
Swine
;
Swine, Miniature/metabolism*
5.A case of Gilbert syndrome caused by gene compound heterozygous mutations.
Weijie OU ; Su LIN ; Yilong WU ; Yueyong ZHU
Journal of Zhejiang University. Medical sciences 2020;49(3):406-409
A case of Gilbert syndrome (GS) with a heterozygous mutation in the gene is reported. The patient had no symptoms except for recurrent sclera icterus since childhood. Laboratory examinations revealed an elevated unconjugated bilirubin. Biliary obstruction, hemolysis and other diseases that might cause jaundice were excluded. *28 and c.211G>A heterozygous mutations in gene were found, which may be another type of mutation causing GS in Chinese population.
Asian Continental Ancestry Group
;
Bilirubin
;
Gilbert Disease
;
genetics
;
Glucuronosyltransferase
;
genetics
;
Heterozygote
;
Humans
;
Mutation
6.Study on potential hepatotoxicity of rhein in Rhei Radix et Rhizoma based on liver metabolism.
Qi WANG ; Ya-Dan WANG ; Jian-Bo YANG ; Yue LIU ; Hai-Ruo WEN ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2020;45(2):412-417
The bilirubin metabolism mediated by the phase Ⅱ metabolizing enzyme UGT1A1 in the liver was evaluated to study the potential hepatotoxicity risk based on investigation on the inhibitory effect of rhein and its metabolites on the UGT1A1 enzyme in Rhei Radix et Rhizoma. Firstly, in vitro liver microsomes incubation was used to initiate the phase Ⅱ metabolic reaction to investigate the inhibitory effect of rheinon UGT1A1 enzyme. Secondly, the phase Ⅰ and phase Ⅱ metabolic reactions were initiated to investigate the hepatotoxicity risk of rhein metabolites. It was found that the rhein and its phase Ⅱ metabolites had no significant inhibitory effect on UGT1A1 enzyme, but its phase Ⅰ metabolites significantly reduced UGT1A1 enzyme activity. Based on the metabolites analysis, it is speculated that the rhein phase Ⅰ metabolite rheinhydroxylate and its tautomers have certain hepatotoxicity risks, while the toxicity risk induced by the prototype and phase Ⅱ metabolites of rheinglucoside, rheinglucuronic acid and rhein sulfate is small.
Anthraquinones/toxicity*
;
Chemical and Drug Induced Liver Injury
;
Drugs, Chinese Herbal/toxicity*
;
Glucuronosyltransferase/metabolism*
;
Humans
;
Liver/enzymology*
;
Microsomes, Liver/drug effects*
;
Rhizome
7.Study on hepatotoxicity of physcion based on liver metabolism in vitro.
Qi WANG ; Ya-Dan WANG ; Jian-Bo YANG ; Yue LIU ; Hai-Ruo WEN ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2019;44(11):2367-2372
To evaluate the hepatotoxicity risks of physcion on the basis of the bilirubin metabolism mediated by glucuronidation of UDP-glucuronosyltransferases 1A1(UGT1A1 enzyme). The monomers were added into the rat liver microsomes to test the hepatotoxicity by using bilirubin as UGT1A1 enzyme substrate, with apparent inhibition constant K_i as the evaluation index. Liver microsome incubation in vitro was adopted to initiate phase Ⅱ metabolic reaction and investigate the inhibitory effect of physcion. Then the phase Ⅰ and Ⅱ metabolic reactions were initiated to investigate the comprehensive inhibition of metabolites and prototype components. The results showed that when only the phase Ⅱ reaction was initiated, physcion directly acted on the UGT1A1 enzyme in a prototype form, exhibited weak inhibition and the inhibition type was mixed inhibition; When the phase Ⅰ and Ⅱ reactions were initiated simultaneously, the inhibitory effects of physcion on UGT1A1 enzyme became strong and the inhibition type was mixed inhibition, suggesting that physcion had phase Ⅰ and Ⅱ metabolic processes, and the metabolites had strong inhibitory effect on UGT1A1 enzyme. This experiment preliminarily proved that the metabolites of physcion may be the main components to induce hepatotoxicity.
Animals
;
Chemical and Drug Induced Liver Injury
;
Emodin
;
analogs & derivatives
;
toxicity
;
Glucuronosyltransferase
;
metabolism
;
Kinetics
;
Microsomes, Liver
;
drug effects
;
Rats
8.Correlation of UGT2B7 Polymorphism with Cardiotoxicity in Breast Cancer Patients Undergoing Epirubicin/Cyclophosphamide-Docetaxel Adjuvant Chemotherapy.
Hai LI ; Bo HU ; Zhe GUO ; Xueqing JIANG ; Xinyu SU ; Xiaoyi ZHANG
Yonsei Medical Journal 2019;60(1):30-37
PURPOSE: The present study aimed to investigate correlations between uridine glucuronosyltransferase 2B7 (UGT2B7) -161 single nucleotide polymorphism C to T (C>T) and the occurrence of cardiotoxicity in Chinese breast cancer (BC) patients undergoing epirubicin/cyclophosphamide-docetaxel (EC-D) adjuvant chemotherapy. MATERIALS AND METHODS: 427 BC patients who had underwent surgery were consecutively enrolled in this prospective cohort study. All patients were scheduled to receive EC-D adjuvant chemotherapy regimen, and they were divided into UGT2B7 -161 CC (n=141), UGT2B7 -161 CT (n=196), and UGT2B7 -161 TT (n=90) groups according to their genotypes. Polymerase chain reaction was performed for determination of UGT2B7 -161 genotypes. Cardiotoxicity was defined as an absolute decline in left ventricular ejection fraction (LVEF) of at least 10% points from baseline to a value less than 53%, heart failure, acute coronary artery syndrome, or fatal arrhythmia. RESULTS: LVEF values were lower at cycle (C) 4, C8, 3 months after chemotherapy (M3), M6, M9, and M12 compared to C0 (all p < 0.001), in BC patients undergoing EC-D adjuvant chemotherapy. Cardiotoxicity was recorded for 4.2% of the overall population and was lowest in the UGT2B7 -161 TT group (1.1%), compared to UGT2B7 -161 CT (3.1%) and UGT2B7 -161 CC (7.8%) group (p=0.026). Multivariate logistic regression revealed that UGT2B7 -161 T allele could independently predict a low occurrence of cardiotoxicity in BC patients undergoing EC-D adjuvant chemotherapy (p=0.004). CONCLUSION: A UGT2B7 -161 T allele serves as a potential biomarker for predicting a low occurrence of cardiotoxicity in BC patients undergoing EC-D adjuvant chemotherapy.
Alleles
;
Arrhythmias, Cardiac
;
Asian Continental Ancestry Group
;
Breast Neoplasms*
;
Breast*
;
Cardiotoxicity*
;
Chemotherapy, Adjuvant*
;
Cohort Studies
;
Coronary Vessels
;
Drug Therapy
;
Genotype
;
Glucuronosyltransferase
;
Heart Failure
;
Humans
;
Logistic Models
;
Polymerase Chain Reaction
;
Polymorphism, Single Nucleotide
;
Prospective Studies
;
Stroke Volume
;
Uridine
9.Prediction of potential drug interactions of apigenin based on molecular docking and in vitro inhibition experiments.
Qi WANG ; Ya-Dan WANG ; Jian-Bo YANG ; Yue LIU ; Hai-Ruo WEN ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2019;44(18):4043-4047
The purpose of this study was to investigate the effect of apigenin on UGT1 A1 enzyme activity and to predict the potential drug-drug interaction of apigenin in clinical use. First,on the basis of previous experiments,the binding targets and binding strength of apigenin to UGT1 A1 enzyme were predicted by computer molecular docking method. Then the inhibitory effect of apigenin on UGT1 A1 enzyme was evaluated by in vitro human liver microsomal incubation system. Molecular docking results showed that apigenin was docked into the active region of UGT1 A1 enzyme protein F,consistent with the active region of bilirubin docking,with moderate affinity. Apigenin flavone mother nucleus mainly interacted with amino acid residues ILE343 and VAL345 to form hydrophobic binding Pi-Alkyl. At the same time,the hydroxyl group on the mother nucleus and the amino acid residue LYS346 formed an additional hydrogen bond,which increased the binding of the molecule to the protein. These results suggested that the flavonoid mother nucleus structure had a special structure binding to the enzyme protein UGT1 A1,and the introduction of hydroxyl groups into the mother nucleus can increase the binding ability. In vitro inhibition experiments showed that apigenin had a moderate inhibitory effect on UGT1 A1 enzyme in a way of competitive inhibition,which was consistent with the results of molecular docking. The results of two experiments showed that apigenin was the substrate of UGT1 A1 enzyme,which could inhibit the activity of UGT1 A1 enzyme competitively,and there was a risk of drug interaction between apigenin and UGT1 A1 enzyme substrate in clinical use.
Apigenin/chemistry*
;
Bilirubin/chemistry*
;
Drug Interactions
;
Glucuronosyltransferase/metabolism*
;
Humans
;
Hydrogen Bonding
;
Microsomes, Liver/drug effects*
;
Molecular Docking Simulation
10.The metabolism and hepatotoxicity of ginkgolic acid (17 : 1) in vitro.
Qing-Qing YAO ; Li LI ; Ming-Cheng XU ; Hai-Hong HU ; Hui ZHOU ; Lu-Shan YU ; Su ZENG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):829-837
Pharmacological activities and adverse side effects of ginkgolic acids (GAs), major components in extracts from the leaves and seed coats of Ginkgo biloba L, have been intensively studied. However, there are few reports on their hepatotoxicity. In the present study, the metabolism and hepatotoxicity of GA (17 : 1), one of the most abundant components of GAs, were investigated. Kinetic analysis indicated that human and rat liver microsomes shared similar metabolic characteristics of GA (17 : 1) in phase I and II metabolisms. The drug-metabolizing enzymes involved in GA (17 : 1) metabolism were human CYP1A2, CYP3A4, UGT1A6, UGT1A9, and UGT2B15, which were confirmed with an inhibition study of human liver microsomes and recombinant enzymes. The MTT assays indicated that the cytotoxicity of GA (17 : 1) in HepG2 cells occurred in a time- and dose-dependent manner. Further investigation showed that GA (17 : 1) had less cytotoxicity in primary rat hepatocytes than in HepG2 cells and that the toxicity was enhanced through CYP1A- and CYP3A-mediated metabolism.
Animals
;
Cells, Cultured
;
Cytochrome P-450 CYP1A2
;
metabolism
;
Cytochrome P-450 CYP3A
;
metabolism
;
Ginkgo biloba
;
chemistry
;
Glucuronosyltransferase
;
metabolism
;
Hepatocytes
;
chemistry
;
drug effects
;
enzymology
;
metabolism
;
Humans
;
Kinetics
;
Liver
;
chemistry
;
drug effects
;
enzymology
;
metabolism
;
Microsomes, Liver
;
chemistry
;
drug effects
;
enzymology
;
metabolism
;
Plant Extracts
;
chemistry
;
metabolism
;
toxicity
;
Rats
;
Rats, Sprague-Dawley
;
Salicylates
;
chemistry
;
metabolism
;
toxicity

Result Analysis
Print
Save
E-mail