1.Construction and purification of nanodiscs for glucose transporter 1.
Qianwen WANG ; Ruohan JIA ; Xue MO ; Wen CHEN
Chinese Journal of Biotechnology 2025;41(8):3178-3186
Glucose transporters (GLUTs) are pivotal membrane proteins that facilitate the passive transport of glucose into cells. However, their aberrant overexpression is closely linked to the Warburg effect and chemotherapy resistance of tumors. GLUTs are complex multi-pass transmembrane proteins that require detergents for extraction from the cell membrane during preparation. The persistent presence of detergents in the sample can disrupt lipid-protein interactions, potentially leading to conformational distortion and functional losses of GLUTs, severely hindering the research into their structures and transport mechanisms. To eliminate detergent interference and preserve its authentic conformation, this study employs nanodisc technology and utilizes the self-assembly of the membrane scaffold protein MSP1E3D1 and phospholipids to produce a biomimetic membrane environment, thereby overcoming the limitations of conventional methods. The C-terminal His10-tagged GLUT1 was heterologously expressed in the insect cell Sf9/Bac-to-Bac system, and the GLUT1-nanodisc complex was obtained after detergent solubilization, affinity chromatography purification via anti-His antibody resin, and self-assembly. The successfully reconstituted nanodisc complex was further purified by Ni-NTA affinity chromatography. Nanodisc reconstitution produced monodisperse GLUT1 particles that retained native secondary structure, as confirmed by far-UV circular dichroism (CD) spectroscopy and dynamic light scattering (DLS). Unlike conventional detergent micelles, which lack a true lipid bilayer, distort transmembrane-helix topology, and occlude ligand-binding sites, the nanodisc platform embeds GLUT1 in a phospholipid bilayer that preserves its authentic conformation while eliminating detergent interference. The resulting GLUT1-nanodisc complex is therefore a superior scaffold for high-resolution cryo-EM structural analysis, permitting detailed interrogation of the transporter's conformational cycle, its interactions with partner proteins, and downstream structure-guided, high-throughput drug screening.
Nanostructures/chemistry*
;
Glucose Transporter Type 1/biosynthesis*
;
Humans
;
Animals
;
Phospholipids/chemistry*
;
Detergents/chemistry*
2.Metabolic engineering of Escherichia coli for de novo synthesis of L-theanine.
Siquan ZHOU ; Di ZHANG ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3459-3472
L-theanine is an important natural non-protein amino acid that is widely used in food and medicine. Although in previous studies, a microbial fermentation method for L-theanine without the addition of ethylamine has been developed, the conversion rate of this process needs to be further improved. In this study, we constructed a de novo synthesis pathway of L-theanine with glucose as the substrate. First, an in vitro transformation pathway containing ω-transaminase (TA) and γ-glutamylmethylamide synthetase (GMAS) was designed, optimized, and introduced into the chassis strain Escherichia coli K12 W3110 to achieve de novo synthesis of L-theanine. To improve the synthesis efficiency through metabolic engineering, we increased the copies of the GMAS gene gams and the TA gene spuC and enhanced the expression of the aldehyde dehydrogenase gene eutE to provide sufficient acetaldehyde substrate, knocked out the lactate dehydrogenase gene ldhA and the pyruvate formate lyase gene pflB to block bypass metabolism, and introduced the alanine dehydrogenase gene alD to recycle alanine. Furthermore, we over-expressed the phosphoenolpyruvate carboxylase gene ppc to enhance the carbon flux of the TCA cycle, knocked out the succinyl-CoA synthase gene sucCD to reduce the loss of downstream flux of TCA, and integrated the glutamate dehydrogenase gene gdh to enhance the supply of L-glutamate. Finally, the polyphosphate kinase gene ppk was introduced to the ATP cycle, which enhanced the energy supply in L-theanine production. The recombinant strain Tea11 produced 22.60 g/L L-theanine in a 5 L fermenter in 28 h, with a conversion rate of 41.71%. This synthetic pathway in this study balanced the relationship between the supply of ethylamine and the production of theanine, providing a new idea for metabolic engineering of microorganisms to produce L-theanine.
Glutamates/biosynthesis*
;
Metabolic Engineering/methods*
;
Escherichia coli/genetics*
;
Fermentation
;
Transaminases/metabolism*
;
Amide Synthases/metabolism*
;
Glucose/metabolism*
3.Metabolic engineering of Corynebacterium glutamicum for L-valine production.
Hailang YU ; Jia LIU ; Xiaomin LI ; Liming LIU
Chinese Journal of Biotechnology 2025;41(9):3504-3520
L-valine is an important essential branched-chain amino acid widely used in industries such as feed, pharmaceuticals, and food. In order to further enhance the production performance of L-valine, this study systematically engineered the metabolism of a Corynebacterium glutamicum strain, preserved in the laboratory, which is capable of producing L-valine. First, strain VH-9 was obtained by enhancing the precursor supply, synthesis pathway, and transport system of L-valine. In a 5 L fermenter, the titer, yield, and productivity of L-valine were 76.6 g/L, 0.45 g/g, and 2.39 g/(L·h), respectively. Furthermore, strain VH-18 was obtained by enhancing the uptake of substrate glucose and balancing energy supply to reduce succinate accumulation, with the titer, yield, and productivity of L-valine increased to 82.7 g/L, 0.52 g/g, and 2.58 g/(L·h), respectively. After optimization of fermentation conditions, the titer, yield, and productivity of L-valine in strain VH-18 were further improved to 88.7 g/L, 0.54 g/g, and 2.77 g/(L·h), respectively. This study has achieved the high-efficiency production of L-valine through a systems metabolic engineering strategy.
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering/methods*
;
Valine/biosynthesis*
;
Fermentation
;
Glucose/metabolism*
4.A multi-enzyme cascade process for the preparation of L-phosphinothricin.
Manman WANG ; Yu YANG ; Xianbing SONG ; Xiaolian LI ; Binchun LI ; Ziqiang WANG
Chinese Journal of Biotechnology 2025;41(9):3589-3603
L-phosphinothricin (L-PPT) is an efficient broad-spectrum herbicide. To realize the multi-enzyme catalytic preparation of L-PPT, we constructed an engineered strain Escherichia coli YM-1 for efficient expression of D-amino acid transaminase, which could catalyze the generation of the intermediate 2-oxo-4-[(hydroxymethylphosphonyl)] butyric acid (PPO) from D-phosphinothricin (D-PPT). In addition, E. coli pLS was constructed to co-express glutamate dehydrogenase and glucose dehydrogenase, which not only catalyzed the generation of L-PPT from PPO but also regenerated the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). A fed-batch fermentation process was then established for E. coli YM-1 and pLS, and the apparent activities of D-amino acid transaminase and glutamate dehydrogenase were increased by 22.68% and 100.82%, respectively, compared with those in shake flasks. The process parameters were optimized for the catalytic preparation of L-PPT by whole-cell cascade of E. coli YM-1 and pLS with D, L-PPT as the substrate. After reaction for 8 h, 91.36% conversion of D-PPT was achieved, and the enantiomeric excess of L-PPT reached 90.22%. The findings underpin the industrial production of L-PPT.
Escherichia coli/enzymology*
;
Aminobutyrates/metabolism*
;
Glutamate Dehydrogenase/biosynthesis*
;
Glucose 1-Dehydrogenase/biosynthesis*
;
Herbicides/metabolism*
;
Multienzyme Complexes/metabolism*
;
Transaminases/metabolism*
;
Phosphinic Acids/metabolism*
5.Correlation analysis of serum progesterone with clinical indicators and common traditional Chinese medicine syndrome types in male type 2 diabetic patients.
Journal of Southern Medical University 2019;39(5):586-590
OBJECTIVE:
To analyze the correlation of serum progesterone (PROG) level with blood biochemical parameters and common traditional Chinese medicine (TCM) syndromes in male patients with type 2 diabetes mellitus (T2DM).
METHODS:
We collected the clinical data of 192 male patients with T2DM, who were admitted in the Department of Endocrinology, Nanjing Hospital of Chinese Medical Affiliated to Nanjing University of Chinese Medicine between January, 2018 and March, 2019. The general clinical data, C-peptide level, blood glucose level, glycated hemoglobin (HbA1c), HOMA, blood lipid level, and sex hormones were compared between the patients with normal PROG and elevated PROG levels and also between the patients with two common TCM syndromes, namely and deficiency syndrome and damp- heat accumulation in the spleen syndrome. We further compared the sex hormones, C-peptide level, HOMA, HbA1c, and blood glucose level among the patients with the two TCM syndromes having normal or elevated PROG levels.
RESULTS:
Compared with those in patients with normal PROG level, BMI, C-peptide, HOMA-β, and HOMA2-IR were significantly lowered and HOMA-IS, E2, and T were significantly increased in patients with elevated PROG level; no statistical differences were found in age, disease duration, waist-to-hip ratio (WHR), smoking history, blood pressure, blood glucose, blood lipids, HbA1c, LH, FSH or PRL between the two groups. Compared with the patients with damp-heat accumulation syndrome group, the patients with and deficiency syndrome were older and had a longer disease duration, a greater BMI, and higher levels of PROG, C-Peptide, HOMA-β, HOMA2-IR and HOMA-IS, but the smoking history, WHR, HbA1c, blood glucose, and sex hormone levels were comparable between the two groups. Among the 4 groups of patients with different PROG levels and TCM syndromes, significant differences were found in the levels of C-peptide, HOMA-β, HOMA-IS, HOMA2-IR, PROG, E2, T, LH and FSH, and the patients with and deficiency syndrome as well as an elevated PROG level had the lowest C-peptide level, HOMA-β and HOMA2-IR and the highest HOMA-IS, PROG, E2, T, LH and FSH.
CONCLUSIONS
An elevated PROG level is closely related to islet cell dysfunction and TCM syndrome types in male patients with T2DM.
Blood Glucose
;
Diabetes Mellitus, Type 2
;
blood
;
therapy
;
Humans
;
Male
;
Medicine, Chinese Traditional
;
Progesterone
;
biosynthesis
;
Syndrome
;
Yin Deficiency
6.BMAL1 functions as a cAMP-responsive coactivator of HDAC5 to regulate hepatic gluconeogenesis.
Jian LI ; Sihan LV ; Xinchen QIU ; Jiamin YU ; Junkun JIANG ; Yalan JIN ; Wenxuan GUO ; Ruowei ZHAO ; Zhen-Ning ZHANG ; Chao ZHANG ; Bing LUAN
Protein & Cell 2018;9(11):976-980
ARNTL Transcription Factors
;
deficiency
;
metabolism
;
Animals
;
Cyclic AMP
;
metabolism
;
Gluconeogenesis
;
Glucose
;
biosynthesis
;
HEK293 Cells
;
Histone Deacetylases
;
metabolism
;
Humans
;
Liver
;
metabolism
;
Mice
;
Mice, Knockout
7.High-level production of glucose oxidase by recombinant Pichia pastoris using a combined strategy.
Qingxuan MU ; Meirong HU ; Fei CHEN ; Xianzhang JIANG ; Yong TAO ; Jianzhong HUANG
Chinese Journal of Biotechnology 2016;32(7):986-990
To enhance the production of glucose oxidase by recombinant Pichia pastoris, two strategies were developed, which were namely co-feeding of methanol and sorbitol and co-expressing of the protein disulfide isomerase (PDI) and Vitreoscialla hemoglobin (VHb). The volumetric activity reached 456 U/mL by using the strain X33/pPIC9k-GOD, in 5 liter fermentator, with the co-feeding of methanol and sorbitol, it was 0.2 fold higher than that only feeding by methanol. The improved strain was obtained by co-expressing PDI-VHb with GOD. While fermented in a 5 liter fermentator by feeding methanol and sorbitol, the activity of the improved strain reached 716 U/mL with a yield of 7 400 mg/L total soluble protein concentration. These results indicated that heterologous protein expression level can be enhanced by optimizing fermentation condition and co-expression molecular chaperon in Pichia pastoris.
Bioreactors
;
Fermentation
;
Glucose Oxidase
;
biosynthesis
;
Methanol
;
Pichia
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Sorbitol
8.Inhibition of calpain on oxygen glucose deprivation-induced RGC-5 necroptosis.
Shuang CHEN ; Jie YAN ; Hai-Xiao DENG ; Ling-Ling LONG ; Yong-Jun HU ; Mi WANG ; Lei SHANG ; Dan CHEN ; Ju-Fang HUANG ; Kun XIONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(5):639-645
The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5 (RGC-5) necroptosis following oxygen glucose deprivation (OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. The calpain expression was detected by Western blotting and immunofluorescence staining. The calpain activity was tested by activity detection kit. Flow cytometry was used to detect the effect of calpain on RGC-5 necroptosis following OGD with or without N-acetyl-leucyl-leucyl-norleucinal (ALLN) pre-treatment. Western blot was used to detect the protein level of truncated apoptosis inducing factor (tAIF) in RGC-5 cells following OGD. The results showed that there was an up-regulation of the calpain expression and activity following OGD. Upon adding ALLN, the calpain activity was inhibited and tAIF was reduced following OGD along with the decreased number of RGC-5 necroptosis. In conclusion, calpain was involved in OGD-induced RGC-5 necroptosis with the increased expression of its downstream molecule tAIF.
Animals
;
Apoptosis Inducing Factor
;
biosynthesis
;
genetics
;
Calpain
;
biosynthesis
;
genetics
;
Gene Expression Regulation
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
Leupeptins
;
administration & dosage
;
Mice
;
Oxygen
;
metabolism
;
Retinal Ganglion Cells
;
metabolism
;
pathology
;
Retinal Necrosis Syndrome, Acute
;
genetics
;
pathology
9.Ischemic preconditioning inhibits over-expression of arginyl-tRNA synthetase gene Rars in ischemia-injured neurons.
Yin SHEN ; Hong-Yang ZHAO ; Hai-Jun WANG ; Wen-Liang WANG ; Li-Zhi ZHANG ; Rong FU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):554-557
The expression changes of Rars gene in ischemia-injured neurons were investigated by detecting its translational product arginyl-tRNA synthetase (ArgRS), and the inhibitory effects of ischemic preconditioning (IPC) on Rars gene were explored. Both IPC model and prolonged ischemia (PI) model were established by using the classic oxygen glucose deprivation (OGD) method. The primary cultured neurons were assigned into the following groups: the experimental group (IPC+PI group), undergoing PI after a short period of IPC; the conditional control group (PI control group), subjected to PI without IPC; blank control group, the normally cultured neurons. The Rars transcriptional activities and ArgRS expression levels were measured at different time points after re-oxygenation (3 h/6 h/12 h/24 h). Data were collected and statistically analyzed. Compared to the blank control group, the Rars activities and ArgRS levels were significantly increased in PI control group, peaking at the time point of 6 h after re-oxygenation. Rars activities and ArgRS levels were significantly lower in the experimental group than in the PI control group at different time points after re-oxygenation. PI insult can induce an escalating activity of Rars and lead to ArgRS over-expression in primary cultured neurons. IPC can inhibit the increased Rars activity and down-regulate ArgRS expression of ischemia-insulted neurons. This mechanism may confer ischemic tolerance on neurons.
Animals
;
Arginine-tRNA Ligase
;
biosynthesis
;
genetics
;
metabolism
;
Brain Ischemia
;
genetics
;
metabolism
;
pathology
;
Gene Expression Regulation
;
genetics
;
Glucose
;
metabolism
;
Humans
;
Ischemic Preconditioning
;
methods
;
Neurons
;
metabolism
;
pathology
;
Oxygen
;
metabolism
;
Primary Cell Culture
;
Rats
10.Construction and application of black-box model for glucoamylase production by Aspergillus niger.
Lianwei LI ; Hongzhong LU ; Jianye XIA ; Ju CHU ; Yingping ZHUANG ; Siliang ZHANG
Chinese Journal of Biotechnology 2015;31(7):1089-1098
Carbon-limited continuous culture was used to study the relationship between the growth of Aspergillus niger and the production of glucoamylase. The result showed that when the specific growth rate was lower than 0.068 h(-1), the production of glucoamylase was growth-associated, when the specific growth rate was higher than 0.068 h(-1), the production of glucoamylase was not growth-associated. Based on the result of continuous culture, the Monod dynamics model of glucose consumption of A. niger was constructed, Combining Herbert-Pirt equation of glucose and oxygen consumption with Luedeking-Piret equation of enzyme production, the black-box model of Aspergillus niger for enzyme production was established. The exponential fed-batch culture was designed to control the specific growth rate at 0.05 h(-1) by using this model and the highest yield for glucoamylase production by A. niger reached 0.127 g glucoamylase/g glucose. The black-box model constructed in this study successfully described the glucoamylase production by A. niger and the result of the model fitted the measured value well. The black-box model could guide the design and optimization of glucoamylase production by A. niger.
Aspergillus niger
;
metabolism
;
Batch Cell Culture Techniques
;
Carbon
;
Culture Media
;
Glucan 1,4-alpha-Glucosidase
;
biosynthesis
;
Glucose
;
Industrial Microbiology
;
methods
;
Oxygen

Result Analysis
Print
Save
E-mail