1.Factors Related to Blood Intact Incretin Levels in Patients with Type 2 Diabetes Mellitus
Soyeon YOO ; Eun Jin YANG ; Gwanpyo KOH
Diabetes & Metabolism Journal 2019;43(4):495-503
BACKGROUND: We performed this study to identify factors related to intact incretin levels in patients with type 2 diabetes mellitus (T2DM). METHODS: We cross-sectionally analyzed 336 patients with T2DM. Intact glucagon-like peptide 1 (iGLP-1) and intact glucose-dependent insulinotropic polypeptide (iGIP) levels were measured in a fasted state and 30 minutes after ingestion of a standard mixed meal. The differences between 30 and 0 minute iGLP-1 and iGIP levels were indicated as ΔiGLP-1 and ΔiGIP. RESULTS: In simple correlation analyses, fasting iGLP-1 was positively correlated with glucose, C-peptide, creatinine, and triglyceride levels, and negatively correlated with estimated glomerular filtration rate. ΔiGLP-1 was positively correlated only with ΔC-peptide levels. Fasting iGIP showed positive correlations with glycosylated hemoglobin (HbA1c) and fasting glucose levels, and negative correlations with ΔC-peptide levels. ΔiGIP was negatively correlated with diabetes duration and HbA1c levels, and positively correlated with Δglucose and ΔC-peptide levels. In multivariate analyses adjusting for age, sex, and covariates, fasting iGLP-1 levels were significantly related to fasting glucose levels, ΔiGLP-1 levels were positively related to ΔC-peptide levels, fasting iGIP levels were related to fasting C-peptide levels, and ΔiGIP levels were positively related to ΔC-peptide and Δglucose levels. CONCLUSION: Taken together, intact incretin levels are primarily related to C-peptide and glucose levels. This result suggests that glycemia and insulin secretion are the main factors associated with intact incretin levels in T2DM patients.
C-Peptide
;
Creatinine
;
Diabetes Mellitus, Type 2
;
Eating
;
Fasting
;
Gastric Inhibitory Polypeptide
;
Glomerular Filtration Rate
;
Glucagon-Like Peptide 1
;
Glucose
;
Hemoglobin A, Glycosylated
;
Humans
;
Incretins
;
Insulin
;
Meals
;
Multivariate Analysis
;
Triglycerides
2.Glucose-Dependent Insulinotropic Peptide Level Is Associated with the Development of Type 2 Diabetes Mellitus.
Sunghwan SUH ; Mi Yeon KIM ; Soo Kyoung KIM ; Kyu Yeon HUR ; Mi Kyoung PARK ; Duk Kyu KIM ; Nam H CHO ; Moon Kyu LEE
Endocrinology and Metabolism 2016;31(1):134-141
BACKGROUND: Incretin hormone levels as a predictor of type 2 diabetes mellitus have not been fully investigated. Therefore, we measured incretin hormone levels to examine the relationship between circulating incretin hormones, diabetes, and future diabetes development in this study. METHODS: A nested case-control study was conducted in a Korean cohort. The study included the following two groups: the control group (n=149), the incident diabetes group (n=65). Fasting total glucagon-like peptide-1 (GLP-1) and total glucose-dependent insulinotropic peptide (GIP) levels were measured and compared between these groups. RESULTS: Fasting total GIP levels were higher in the incident diabetes group than in the control group (32.64±22.68 pmol/L vs. 25.54±18.37 pmol/L, P=0.034). There was no statistically significant difference in fasting total GLP-1 levels between groups (1.14±1.43 pmol/L vs. 1.39±2.13 pmol/L, P=0.199). In multivariate analysis, fasting total GIP levels were associated with an increased risk of diabetes (odds ratio, 1.005; P=0.012) independent of other risk factors. CONCLUSION: Fasting total GIP levels may be a risk factor for the development of type 2 diabetes mellitus. This association persisted even after adjusting for other metabolic parameters such as elevated fasting glucose, hemoglobin A1c, and obesity in the pre-diabetic period.
Case-Control Studies
;
Cohort Studies
;
Diabetes Mellitus, Type 2*
;
Fasting
;
Gastric Inhibitory Polypeptide*
;
Glucagon-Like Peptide 1
;
Glucose
;
Incretins
;
Multivariate Analysis
;
Obesity
;
Risk Factors
3.Correlation of Glypican-4 Level with Basal Active Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes Mellitus.
Sang Ah LEE ; Gwanpyo KOH ; Suk Ju CHO ; So Yeon YOO ; Sang Ouk CHIN
Endocrinology and Metabolism 2016;31(3):439-445
BACKGROUND: Previous studies have reported that glypican-4 (GPC4) regulates insulin signaling by interacting with insulin receptor and through adipocyte differentiation. However, GPC4 has not been studied with regard to its effects on clinical factors in patients with type 2 diabetes mellitus (T2DM). We aimed to identify factors associated with GPC4 level in T2DM. METHODS: Between January 2010 and December 2013, we selected 152 subjects with T2DM and collected serum and plasma into tubes pretreated with aprotinin and dipeptidyl peptidase-4 inhibitor to preserve active gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). GPC4, active GLP-1, active GIP, and other factors were measured in these plasma samples. We performed a linear regression analysis to identify factors associated with GPC4 level. RESULTS: The subjects had a mean age of 58.1 years, were mildly obese (mean body mass index [BMI], 26.1 kg/m2), had T2DM of long-duration (mean, 101.3 months), glycated hemoglobin 7.5%, low insulin secretion, and low insulin resistance (mean homeostatic model assessment of insulin resistance [HOMA-IR], 1.2). Their mean GPC4 was 2.0±0.2 ng/mL. In multivariate analysis, GPC4 was independently associated with age (β=0.224, P=0.009), and levels of active GLP-1 (β=0.171, P=0.049) and aspartate aminotransferase (AST; β=–0.176, P=0.043) after being adjusted for other clinical factors. CONCLUSION: GPC4 was independently associated with age, active GLP-1, and AST in T2DM patients, but was not associated with HOMA-IR and BMI, which are well known factors related to GPC4. Further study is needed to identify the mechanisms of the association between GPC4 and basal active GLP-1 levels.
Adipocytes
;
Aprotinin
;
Aspartate Aminotransferases
;
Body Mass Index
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2*
;
Gastric Inhibitory Polypeptide
;
Glucagon-Like Peptide 1*
;
Glypicans*
;
Hemoglobin A, Glycosylated
;
Humans
;
Insulin
;
Insulin Resistance
;
Linear Models
;
Multivariate Analysis
;
Plasma
;
Receptor, Insulin
4.Berberine regulates glycemialocal inhibition of intestinal dipeptidyl peptidase-Ⅳ.
Jiesheng WANG ; Guanhai DAI ; Weijia LI
Journal of Zhejiang University. Medical sciences 2016;45(5):486-492
To investigate the effect of berberine on glycemia regulation in rats with diabetes and the related mechanisms.Diabetic-like rat model was successfully induced by intraperitoneal injection of streptozotocin in 50 out of 60 male SD rats, which were then randomly divided into 5 groups with 10 rats in each:control group (received vehicle only), positive drug control group (sitagliptin 10 mg·kg·d), low-dose berberine group (30 mg·kg·d), moderate-dose berberine group (60 mg·kg·d), and high-dose berberine group (120 mg·kg·d). All animals were fed for 3 d, and fasting blood sampling was performed on day 3 of administration. Rats were given glucose (2 g/kg) by gavage 30 min after the last dose. Blood and intestinal samples were obtained 2 h after glucose loading. Fasting blood glucose (FBG) and 2-h postprandial plasma glucose (2h-PPG) were detected by using biochemical analyzer, and insulin, glucagon-like peptide-1 (GLP-1) and dipeptidyl peptidase-Ⅳ(DPP-Ⅳ) were measured by using ELISA kit.No significant difference in FBG and serum DPP-Ⅳ level were found between berberine groups and control group (all>0.05). Compared with control group, serum levels of GLP-1 and insulin were increased in high-and moderate-dose berberine groups, while 2h-PPG was decreased (all<0.05); GLP-1 levels in the intestinal samples were increased, while DPP-Ⅳ levels were decreased in all berberine groups (all<0.05).Short-term berberine administration can decrease 2h-PPG level in streptozotocin-induced diabetic rat model through local inhibition of intestinal DPP-Ⅳ. The efficacy of DPP-Ⅳ inhibitor may be associated with its intestinal pharmacokinetics.
Animals
;
Berberine
;
pharmacokinetics
;
pharmacology
;
Blood Glucose
;
drug effects
;
Diabetes Mellitus, Experimental
;
chemically induced
;
drug therapy
;
Dipeptidyl Peptidase 4
;
analysis
;
drug effects
;
pharmacokinetics
;
Dipeptidyl-Peptidase IV Inhibitors
;
Dose-Response Relationship, Drug
;
Glucagon-Like Peptide 1
;
analysis
;
blood
;
Hypoglycemic Agents
;
Insulin
;
blood
;
Intestines
;
chemistry
;
drug effects
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Sitagliptin Phosphate
5.Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion.
Eun Ky KIM ; Tae Jung OH ; Lee Kyung KIM ; Young Min CHO
Journal of Korean Medical Science 2016;31(2):222-230
Dietary fiber improves hyperglycemia in patients with type 2 diabetes through its physicochemical properties and possible modulation of gut hormone secretion, such as glucagon-like peptide 1 (GLP-1). We assessed the effect of dietary fiber-enriched cereal flakes (DC) on postprandial hyperglycemia and gut hormone secretion in patients with type 2 diabetes. Thirteen participants ate isocaloric meals based on either DC or conventional cereal flakes (CC) in a crossover design. DC or CC was provided for dinner, night snack on day 1 and breakfast on day 2, followed by a high-fat lunch. On day 2, the levels of plasma glucose, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin were measured. Compared to CC, DC intake exhibited a lower post-breakfast 2-hours glucose level (198.5±12.8 vs. 245.9±15.2 mg/dL, P<0.05) and a lower incremental peak of glucose from baseline (101.8±9.1 vs. 140.3±14.3 mg/dL, P<0.001). The incremental area under the curve (iAUC) of glucose after breakfast was lower with DC than with CC (P<0.001). However, there were no differences in the plasma insulin, glucagon, GLP-1, and GIP levels. In conclusion, acute administration of DC attenuates postprandial hyperglycemia without any significant change in the representative glucose-regulating hormones in patients with type 2 diabetes (ClinicalTrials.gov. NCT 01997281).
Adult
;
Aged
;
Area Under Curve
;
Blood Glucose/*analysis
;
Cross-Over Studies
;
Diabetes Mellitus, Type 2/complications/diagnosis/*diet therapy
;
Dietary Fiber/*therapeutic use
;
Female
;
Gastric Inhibitory Polypeptide/blood
;
Glucagon/blood
;
Glucagon-Like Peptide 1/*blood
;
Hemoglobin A, Glycosylated/analysis
;
Humans
;
Hyperglycemia/complications/diagnosis
;
Insulin/blood
;
Intestines/metabolism
;
Male
;
Middle Aged
;
ROC Curve
6.Prognostic Significance of Defining L-Cell Type on the Biologic Behavior of Rectal Neuroendocrine Tumors in Relation with Pathological Parameters.
Jin Hee SOHN ; Mee Yon CHO ; Yangsoon PARK ; Hyunki KIM ; Woo Ho KIM ; Joon Mee KIM ; Eun Sun JUNG ; Kyoung Mee KIM ; Jae Hyuk LEE ; Hee Kyung CHAN ; Do Youn PARK ; Mee JOO ; Sujin KIM ; Woo Sung MOON ; Mi Seon KANG ; So Young JIN ; Yun Kyung KANG ; Sun Och YOON ; Hyeseung HAN ; Eunhee CHOI
Cancer Research and Treatment 2015;47(4):813-822
PURPOSE: In 2010, the World Health Organization categorized L-cell type neuroendocrine tumors (NETs) as tumors of uncertain malignancy, while all others were classified as malignant. However, the diagnostic necessity of L-cell immunophenotyping is unclear, as are tumor stage and grade that may guide diagnosis and management. To clarify the predictive markers of rectal neuroendocrine neoplasms (NENs), 5- and 10-year overall survival (OS) was analyzed by pathological parameters including L-cell phenotype. MATERIALS AND METHODS: A total of 2,385 rectal NENs were analyzed from our previous multicenter study and a subset of 170 rectal NENs was immunophenotyped. RESULTS: In univariate survival analysis, tumor grade (p < 0.0001), extent (p < 0.0001), size (p < 0.0001), lymph node metastasis (p=0.0063), and L-cell phenotype (p < 0.0001) showed significant correlation with the prognosis of rectal NENs; however, none of these markers achieved independent significance in multivariate analysis. The 10-year OS of tumors of NET grade 1, < 10 mm, the mucosa/submucosa was 97.58%, 99.47%, and 99.03%, respectively. L-Cell marker, glucagon II (GLP-1&2), with a cut off score of > 10, is useful in defining L-Cell type. In this study, an L-cell immunophenotype was found in 83.5% of all rectal NENs and most, but not all L-cell type tumors were NET G1, small (< 10 mm) and confined to the mucosa/submucosa. CONCLUSION: From these results, the biological behavior of rectal NENs does not appear to be determined by L-cell type alone but instead by a combination of pathological parameters.
Diagnosis
;
Glucagon
;
Immunohistochemistry
;
Immunophenotyping
;
International Classification of Diseases
;
Lymph Nodes
;
Multivariate Analysis
;
Neoplasm Metastasis
;
Neuroendocrine Tumors*
;
Phenotype
;
Prognosis
;
Rectal Neoplasms
;
World Health Organization
7.Clinical observation on the combined therapy of sitagliptin with insulin for patients with brittle diabetes.
Na LUO ; Yan ZHU ; Zhenwen ZHANG ; Hui CHEN ; Yan WANG
Journal of Central South University(Medical Sciences) 2015;40(10):1089-1095
OBJECTIVE:
To observe the clinical efficacy of sitagliptin plus insulin on patients with brittle diabetes and to determine the effect of the combined therapy on glucagon secretion.
METHODS:
This randomized, double-blinded and placebo-controlled trial included 30 patients with brittle diabetes. Participants were randomly assigned (1:1) to receive the treatment of either sitagliptin plus insulin or placebo plus insulin for 12 weeks. The blood glucose, hemoglobin A1c, insulin dose, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and other parameters were determined.
RESULTS:
After 12 weeks of treatment, blood glucose was controlled better by sitagliptin plus insulin (P<0.01). The patients had significantly lower glucose variability indices, lower daily insulin requirement and hemoglobin A1c in the group of sitagliptin plus insulin (P<0.01). After steamed bun test, past-meal GLP-1 levels at 30 min were higher (P<0.01) while GIP levels were lower (P<0.01), with glucagon suppression in the sitagliptin plus insulin group. No significant change was observed at any time point in placebo plus insulin group.
CONCLUSION
Sitagliptin significantly decreases blood glucose level and blood glucose fluctuation, which may contribute to the ability of sitagliptin in decreasing glucagon secretion.
Blood Glucose
;
analysis
;
C-Peptide
;
blood
;
Diabetes Mellitus, Type 1
;
drug therapy
;
Dipeptidyl-Peptidase IV Inhibitors
;
Double-Blind Method
;
Drug Therapy, Combination
;
Gastric Inhibitory Polypeptide
;
blood
;
Glucagon
;
blood
;
Glucagon-Like Peptide 1
;
blood
;
Glycated Hemoglobin A
;
analysis
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
therapeutic use
;
Insulin
;
administration & dosage
;
therapeutic use
;
Sitagliptin Phosphate
;
administration & dosage
;
therapeutic use
8.Delayed Response of Amylin Levels after an Oral Glucose Challenge in Children with Prader-Willi Syndrome.
Hae Jeong LEE ; Yon Ho CHOE ; Jee Hyun LEE ; Young Bae SOHN ; Su Jin KIM ; Sung Won PARK ; Jun Seok SON ; Seon Woo KIM ; Dong Kyu JIN
Yonsei Medical Journal 2011;52(2):257-262
PURPOSE: Amylin secretion is increased parallel to insulin in obese subjects. Despite their marked obesity, a state of relative hypoinsulinemia occurs in children with Prader-Willi syndrome (PWS). Based on the hypothesis that amylin levels may be relatively low in PWS children, contributing to their excessive appetite, we studied amylin levels after oral glucose loading in children with PWS and overweight controls. MATERIALS AND METHODS: Plasma levels of amylin, glucagon, insulin, and glucose were measured at 0, 30, 60, 90, and 120 min after a glucose challenge in children with PWS (n = 18) and overweight controls (n = 25); the relationships among the variables were investigated in these two groups. RESULTS: Amylin levels were significantly correlated with insulin during fasting and during the oral glucose tolerance test in both groups. Amylin levels between 0 and 60 min after glucose loading were statistically different between the two groups. They were lower in children with PWS than in the controls between 0 and 30 min after glucose loading. CONCLUSION: The relatively low levels of amylin, compared to those in overweight controls, during the early phase of glucose loading in patients with PWS, may contribute, in part, to the excessive appetite of PWS patients as compared to the overweight controls.
Adolescent
;
Blood Glucose/analysis
;
Child
;
Female
;
Glucagon/blood
;
Glucose/*pharmacology
;
Glucose Tolerance Test
;
Humans
;
Insulin/blood
;
Islet Amyloid Polypeptide/*blood/physiology
;
Male
;
Obesity/blood/physiopathology
;
Prader-Willi Syndrome/blood/*physiopathology
9.Role and mechanism of uncoupling protein 2 on the fatty acid-induced dysfunction of pancreatic alpha cells in vitro.
Jie-ying SU ; Hong-liang LI ; Wen-ying YANG ; Jian-zhong XIAO ; Rui-qin DU ; Xiao-xia SHEN ; Zhe CAI ; Lan ZHANG ; Jun SHU
Chinese Medical Journal 2010;123(17):2416-2423
BACKGROUNDUncoupling protein (UCP) 2 is related to the dysfunction of beta cells induced by fatty acids. However, whether UCP2 has similar effects on alpha cell is still not clear. This study aimed to investigate the effects of UCP2 and its possible mechanisms in lipotoxicity-induced dysfunction of pancreatic alpha cells.
METHODSThe alpha TC1-6 cells were used in this study to evaluate the effects of palmitate and/or UCP2 inhibit factors on the glucagon secretory function, glucagon content, the glucagon mRNA level and the nitrotyrosine level in the supernatant. Meantime, the expression levels of UCP2 and peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1 alpha) were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Furthermore, the possible relationship between UCP2 and insulin signal transduction pathway was analyzed.
RESULTSPalmitate stimulated alpha cell glucagon secretion and the expression of UCP2 and PGC-1 alpha, which could be partially decreased by the inhibition of UCP2. Palmitate increased nitrotyrosine level and suppressed insulin signal transduction pathway in alpha cells. Inhibition of UCP2 influenced the effects of free fatty acid on alpha cells and may relate to glucagon secretion.
CONCLUSIONUCP2 played an important role on alpha cell dysfunction induced by free fatty acid in vitro, which may be related to its effects on oxidative stress and insulin signal transduction pathway.
Animals ; Cells, Cultured ; Glucagon ; secretion ; Glucagon-Secreting Cells ; drug effects ; physiology ; Insulin ; pharmacology ; Insulin Receptor Substrate Proteins ; metabolism ; Ion Channels ; genetics ; physiology ; Iridoid Glycosides ; pharmacology ; Iridoids ; Mice ; Mitochondrial Proteins ; genetics ; physiology ; Oxidative Stress ; Palmitic Acid ; toxicity ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Phosphorylation ; RNA, Messenger ; analysis ; Signal Transduction ; Trans-Activators ; genetics ; physiology ; Transcription Factors ; Tyrosine ; analogs & derivatives ; metabolism ; Uncoupling Protein 2
10.Effects and mechanism of glucagon-like peptide-1 on injury of rats cardiomyocytes induced by hypoxia-reoxygenation.
Yun XIE ; Shao-xin WANG ; Wei-wei SHA ; Xue ZHOU ; Wei-lin WANG ; Li-pin HAN ; Dai-qing LI ; De-min YU
Chinese Medical Journal 2008;121(21):2134-2138
BACKGROUNDAlthough the insulinotropic role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes mellitus has been substantiated, its role in cardioprotection remains largely unknown. This study aimed to determine the effects of GLP-1 on injury of rats cardiac myocytes induced by hypoxia-reoxygenation (H/R) and the possible mechanisms.
METHODSThe cultured neonatal rats cardiac myocytes were randomly divided into seven groups: the normal control group, the H/R group, the GLP-1 + H/R group, the GLP-1 + H/R + UO126 (the p42/44 mitogen-activated protein kinase (MAPK) inhibitor) group, the GLP-1 + H/R + LY294002 (phosphatidylinositol 3-kinase (PI3K) inhibitor) group, the H/R + UO126 group, and the H/R + LY294002 group. The lactate dehydrogenase (LDH) activity, apoptosis rate of cardiac myocytes, and caspase-3 activity were detected after the injury of H/R.
RESULTSCompared with the normal control group, the activity of LDH, cardiac myocyte apoptosis rate, and caspase-3 activity all increased significantly in the H/R group (P < 0.01). Compared with the H/R group, these three indices all decreased in the H/R + GLP-1 group (P < 0.01). However, the changes of LDH activity, apoptosis rate, and caspase-3 activity were inhibited by LY294002 and UO126 respectively.
CONCLUSIONSGLP-1 can directly act on cardiac myocytes and protect them from H/R injury mainly by inhibiting their apoptosis. Its mechanism may be through the PI3K-Akt pathway and the MAPK signaling pathway.
Actins ; analysis ; Animals ; Butadienes ; pharmacology ; Cell Hypoxia ; Cells, Cultured ; Chromones ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Glucagon-Like Peptide 1 ; pharmacology ; MAP Kinase Signaling System ; Morpholines ; pharmacology ; Myocytes, Cardiac ; drug effects ; Nitriles ; pharmacology ; Phosphatidylinositol 3-Kinases ; physiology ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail