1.Diffuse midline glioma with H3K27 alteration in adults: a clinicopathological analysis.
Qin Yi YANG ; Ming Na LI ; Tian Yu CHEN ; Chong LIU ; Xiao LI ; Zhu Mei SHI ; Min Hong PAN
Chinese Journal of Pathology 2023;52(4):376-383
Objective: To investigate the clinicopathological characteristics, pathological diagnosis and prognosis of diffuse midline glioma (DMG) with H3K27 alteration in adults. Methods: Twenty cases of H3K27-altered adult DMG diagnosed in the First Affiliated Hospital of Nanjing Medical University were enrolled from 2017 to 2022. All cases were evaluated by clinical and imaging presentations, HE, immunohistochemical staining and molecular genetics; and the relevant literature was reviewed. Results: The ratio of male to female was 1∶1, and the median age was 53 years (range from 25 to 74 years); the tumors were located in the brainstem (3/20, 15%) and non-brainstem (17/20, 85%; three in thoracolumbar spinal cord and one in pineal region). The clinical manifestations were non-specific, mostly dizziness, headache, blurred vision, memory loss, low back pain, limb sensation and/or movement disorders, etc. Microscopically, the tumors showed infiltrative growth, with WHO grade 2 (3 cases), grade 3 (12 cases), and grade 4 (5 cases). The tumors showed astrocytoma-like and oligdendroglioma-like, pilocytic astrocytoma-like and epithelioid-like patterns. Immunohistochemically, the tumor cells were positive for GFAP, Olig2 and H3K27M, and H3K27me3 expression was variably lost. ATRX expression was lost in four cases, p53 was strongly positive in 11 cases. Ki-67 index was about 5%-70%. Molecular genetics showed p. k27m mutation in exon 1 of H3F3A gene in 20 cases; BRAF mutation in two cases: V600E and L597Q mutation in one case each. Follow up intervals ranged from 1 to 58 months, and the survival time for brainstem (6.0 months) and non-brainstem (30.4 months) tumors was significantly different (P<0.05). Conclusions: DMG with H3K27 alteration is uncommonly found in adults, mostly occurs in non-brainstem, and can present in adults of all ages. Owing to the wide histomorphologic features, mainly astrocytic differentiation, routine detection of H3K27me3 in midline glioma is recommended. Molecular testing should be performed on any suspected cases to avoid missed diagnosis. Concomitant BRAF L597Q mutation and PPM1D mutation are novel findings. The overall prognosis of this tumor is poor, with tumors located in the brainstem showing worse outcome.
Humans
;
Adult
;
Male
;
Female
;
Middle Aged
;
Aged
;
Histones/genetics*
;
Brain Neoplasms/pathology*
;
Proto-Oncogene Proteins B-raf/metabolism*
;
Glioma/pathology*
;
Astrocytoma/pathology*
;
Mutation
2.Lactate-induced up-regulation of PLEKHA4 promotes proliferation and apoptosis of human glioma cells.
Jingjing YE ; Wenqin XU ; Bangsheng XI ; Nengqian WANG ; Tianbing CHEN
Journal of Southern Medical University 2023;43(7):1071-1080
OBJECTIVE:
To investigate the effect of lactic acid-induced upregulation of PLEKHA4 expression on biological behaviors of glioma cells and the possible molecular mechanism.
METHODS:
GEO database and GEPIA2 website were used to analyze the relationship between PLEKHA4 expression level and the pathological grade of glioma. A specific PLEKHA4 siRNA was transfected in glioma U251 and T98G cells, and the changes in cell proliferation ability were assessed by real-time cell analysis technology and Edu experiment. The colony-forming ability of the cells was evaluated using plate cloning assay, and cell cycle changes and cell apoptosis were analyzed with flow cytometry. The mRNA expression of PLEKHA4 was detected by PCR in glioma samples and controls and in glioma cells treated with lactic acid and glucose. Xenograft mice in vivo was used to detect tumor formation in nude mice; Western blotting was used to detect the expressions of cyclinD1, CDK2, Bcl2, β-catenin and phosphorylation of the key proteins in the MAPK signaling pathway.
RESULTS:
The results of GEO database and online website analysis showed that PLEKHA4 was highly expressed in glioma tissues and was associated with poor prognosis; PLEKHA4 knockdown obviously inhibited the proliferation and attenuated the clone-forming ability of the glioma cells (P < 0.05). Flow cytometry showed that PLEKHA4 knockdown caused cell cycle arrest in G1 phase and promoted apoptosis of the cells (P < 0.01). PLEKHA4 gene mRNA expression was increased in glioma samples and glioma cells after lactate and glucose treatment (P < 0.01). PLEKHA4 knockdown, tumor formation ability of nude mice decreased; PLEKHA4 knockdown obviously lowered the expression of cyclinD1, CDK2, Bcl2 and other functional proteins, inhibited the phosphorylation of ERK and p38 and reduced the expression of β-catenin protein (P < 0.01).
CONCLUSION
PLEKHA4 knockdown inhibited the proliferation of glioma cells and promoted apoptosis by inhibiting the activation of the MAPK signaling pathway and expression of β-catenin. Lactic acid produced by glycolysis upregulates the expression of PLEKHA4 in glioma cells.
Humans
;
Animals
;
Mice
;
Up-Regulation
;
beta Catenin/metabolism*
;
Mice, Nude
;
Brain Neoplasms/pathology*
;
Lactic Acid
;
Cell Line, Tumor
;
Glioma/pathology*
;
Cell Proliferation
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/genetics*
;
Gene Expression Regulation, Neoplastic
3.The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities.
Qiyuan ZHUANG ; Hui YANG ; Ying MAO
Neuroscience Bulletin 2023;39(3):393-408
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Humans
;
Glioma/metabolism*
;
Neuroglia/metabolism*
;
Carcinogenesis/pathology*
;
Neural Stem Cells/metabolism*
;
Microglia/metabolism*
;
Brain Neoplasms/metabolism*
;
Tumor Microenvironment
4.Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma.
Jing FENG ; Zheng ZHAO ; Yanfei WEI ; Zhaoshi BAO ; Wei ZHANG ; Fan WU ; Guanzhang LI ; Zhiyan SUN ; Yanli TAN ; Jiuyi LI ; Yunqiu ZHANG ; Zejun DUAN ; Xueling QI ; Kai YU ; Zhengmin CONG ; Junjie YANG ; Yaxin WANG ; Yingyu SUN ; Fuchou TANG ; Xiaodong SU ; Chuan FANG ; Tao JIANG ; Xiaolong FAN
Frontiers of Medicine 2023;17(2):240-262
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.
Humans
;
Brain Neoplasms/pathology*
;
Neoplasm Recurrence, Local/metabolism*
;
Glioma/pathology*
;
Neural Stem Cells/pathology*
;
Oligodendrocyte Precursor Cells/pathology*
;
Tumor Microenvironment
6.miRNA-128-3p inhibits malignant behavior of glioma cells by downregulating KLHDC8A expression.
Zhengtao YU ; Jiameng LI ; Junwen JIANG ; You LI ; Long LIN ; Ying XIA ; Lei WANG
Journal of Southern Medical University 2023;43(9):1447-1459
OBJECTIVE:
To determine whether miRNA-128-3p regulates malignant biological behavior of glioma cells by targeting KLHDC8A.
METHODS:
Dual-luciferase reporter assays, qRT-PCR and Western blotting were used to verify the targeting of miRNA-128-3p to KLHDC8A. Edu assay, flow cytometry, Transwell assay and would healing assay were used to determine the effects of changes in miRNA-128-3p and KLHDC8A expression levels on malignant behavior of glioma cells. Rescue experiment was carried out to verify that miRNA-128-3p regulated glioma cell proliferation, apoptosis, invasion and migration by targeting KLHDC8A.
RESULTS:
The expression level of KLHDC8A was significantly increased in high-grade glioma tissue and was closely related to a poor survival outcome of the patients. Overexpression of KLHDC8A promoted glioma cell proliferation, migration and invasion, and miRNA-128-3p overexpression inhibited proliferative and metastatic capacities of glioma cells. Mechanistically, KLHDC8A expression was directly modulated by miRNA-128-3p, which, by targeting KLHDC8A, inhibited malignant behavior of glioma cells.
CONCLUSION
Upregulation of miRNA-128-3p inhibits uncontrolled growth of glioma cells by negatively regulating KLHDC8A expression and its downstream effectors, suggesting that the miRNA-128-3p-KLHDC8A axis may serve as a potential prognostic indicator and a therapeutic target for developing new strategies for glioma treatment.
Humans
;
Apoptosis
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glioma/pathology*
;
MicroRNAs/metabolism*
;
Up-Regulation
7.Single-cell transcriptome analysis of multigrade glioma heterogeneity and immune microenvironment revealed potential prognostic biomarkers.
Jie LIU ; Kailong XU ; Lixin MA ; Yang WANG
Chinese Journal of Biotechnology 2022;38(10):3790-3808
Glioma, the most common intrinsic tumor of the central nervous system, is characterized by its high incidence and poor prognosis. The aim of this study was to identify differentially expressed genes (DEGs) between glioblastoma multiforme (GBM) and low-grade glioma (LGG) to explore prognostic factors of different grades of gliomas. Single-cell transcriptome sequencing data of gliomas were collected from the NCBI Gene Expression Omnibus (GEO), which included a total of 29 097 cell samples from three datasets. For the analysis of human gliomas of different grades, 21 071 cells were obtained by filtering, and 70 genes were screened from differentially expressed genes by gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, from which the gene DLL3 was focused by reviewing the literature. The TCGA-based gene expression profiling interactive analysis (GEPIA) database was used to explore the survival curves of genes in LGG and GBM, and the gene expression profiling interactive analysis and tumor immune estimation resource (TIMER) database was used to study the expression of key genes in gliomas of different grades, predicting biomarkers that were closely related to immunotherapy. The cBioPortal database was used to explore the relationship between DLL3 expression and 25 immune checkpoints. Gene set enrichment analysis (GSEA) further identified pathways associated with central genes. Finally, the efficacy of biomarkers in prognosis and prediction was validated in the Chinese glioma genome atlas (CGGA). These results demonstrated that prognostic genes are associated with tumor proliferation and progression. Analysis of biological information and survival suggested that these genes might serve as a promising prognostic biomarker and as new targets for selecting therapeutic strategies.
Humans
;
Biomarkers
;
Brain Neoplasms/pathology*
;
Gene Expression Profiling/methods*
;
Glioblastoma/pathology*
;
Glioma/pathology*
;
Intracellular Signaling Peptides and Proteins
;
Membrane Proteins/genetics*
;
Prognosis
;
Transcriptome
;
Tumor Microenvironment/genetics*
;
Biomarkers, Tumor
9.Clinicopathological characteristics of H3K27-altered diffuse midline glioma and evaluation of NTRK as its therapeutic target.
Ze Jun DUAN ; Jing FENG ; Kun YAO ; Ze Juan HU ; Zhong MA ; Lei XIANG ; Xu Fei ZHANG ; Xue Ling QI
Chinese Journal of Pathology 2022;51(11):1115-1122
Objective: To investigate the clinicopathological characteristics of H3K27-altered diffuse midline glioma (DMG), and to analyze DMG's prognostic factors, and subsequently, to study the possibility of using NTRK as a therapeutic target for DMG. Methods: A total of 232 DMG diagnosed at the Sanbo Brain Hospital, Capital Medical University, Beijing, China from July 2016 to March 2021 were collected. Their clinical, radiological and pathological features, the ratio of MGMT promoter methylation, expression of NTRK, and characteristics of NTRK gene fusion were analyzed. The prognostic values of different factors were also studied, including age, tumor location, histological grade, gene and protein expression of NTRK, and postoperative adjuvant therapy. Results: Among the 232 DMG cases, there were 8 patients with both primary and relapse tumors on the record. Thus, a total of 224 patients were analyzed, including 118 males and 106 females. There were 126 adults (>18 years of age) and 98 children (≤18 years of age). Notably, the most frequent location was thalamus (41/126, 32.5%) in adults, but brainstem (59/96, 60.2%) in children. The lesions showed T1 hypointensity or isointensity, and T2 hyperintensity. However, contrast enhancement patterns of the tumors varied, with many tumors lacking contrast-enhancing. The histological grades included grade 2 (9/224, 4.0%), grade 3 (41/224, 18.3%) and grade 4 (174/224, 77.7%). Two hundred and twenty-four DMGs were diffusely positive for H3K27M and negative for H3K27me3. The ratio of MGMT promoter methylation was low (1/45, 2.2%). One hundred and seventy-seven of the 224 cases (177/224, 79.0%) were positive for NTRK. Fifty cases were analyzed using fluorescence in situ hybridization. Among them, five DMGs (positive rate, 10.0%) were NTRK fusion positive. This study showed that there were no differences between adult and pediatric DMGs in histological grading, expression of NTRK, and NTRK gene fusion. One hundred and fifty-nine patients were included in the follow-up analysis (P>0.05). During the follow-up period, 109/159 patients (69.6%) died of the disease, with a median survival time of 12 months (range 1 to 55 months). Univariate log-rank analysis showed that age, location, surgical procedure and postoperative adjuvant therapy were associated with overall survivals of the DMG patients (P<0.05). Conclusions: The prognosis of DMG is poor overall. There are differences between adult and pediatric DMGs in anatomic location and prognosis, but not in other features. NTRK1 gene fusion is detected in 10.0% of the tumors. It suggests that TRK inhibitor might be a choice for treating DMG.
Adult
;
Male
;
Female
;
Humans
;
Child
;
Aged, 80 and over
;
In Situ Hybridization, Fluorescence
;
Glioma/pathology*
;
Prognosis
;
Gene Fusion
;
Promoter Regions, Genetic
10.Atorvastatin inhibits malignant behaviors and induces apoptosis in human glioma cells by up-regulating miR-146a and inhibiting the PI3K/Akt signaling pathway.
Ying CUI ; Shun Zhi FAN ; Di Di PAN ; Qing CHAO
Journal of Southern Medical University 2022;42(6):899-904
OBJECTIVE:
To explore the effect of atorvastatin (AVT) on biological behaviors and the miR-146a/PI3K/Akt signaling pathway in human glioma cells.
METHODS:
Human glioma U251 cells were treated with 8.0 μmol/L AVT or transfected with a miR-146a inhibitor or a negative control fragment (miR-146a NC) prior to AVT treatment. RT-PCR was used to detect miR-146a expression in the cells, and the changes in cell proliferation rate, apoptosis, cell invasion and migration were detected using MTT assay, flow cytometry, and Transwell assay. Western blotting was performed to detect the changes in cellular expressions of proteins in the PI3K/Akt signaling pathway.
RESULTS:
AVT treatment for 48 h resulted in significantly increased miR-146a expression and cell apoptosis (P < 0.01) and obviously lowered the cell proliferation rate, invasion index, migration index, and expressions of p-PI3K and p-Akt protein in U251 cells (P < 0.01). Compared with AVT treatment alone, transfection with miR-146a inhibitor prior to AVT treatment significantly reduced miR-146a expression and cell apoptosis (P < 0.01), increased the cell proliferation rate, promoted cell invasion and migration, and enhanced the expressions of p-PI3K and p-Akt proteins in the cells (P < 0.01); these effects were not observed following transfection with miR-146a NC group (P>0.05).
CONCLUSION
AVT can inhibit the proliferation, invasion and migration and promote apoptosis of human glioma cells possibly by up-regulating miR-146a expression and inhibiting the PI3K/Akt signaling pathway.
Apoptosis
;
Atorvastatin/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Glioma/pathology*
;
Humans
;
MicroRNAs/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail