1.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
2.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
3.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
4.Identification and expression analysis of B3 gene family in Panax ginseng.
Yu-Long WANG ; Ai-Min WANG ; Jing-Hui YU ; Si-Zhang LIU ; Ge JIN ; Kang-Yu WANG ; Ming-Zhu ZHAO ; Yi WANG ; Mei-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(16):4593-4609
Panax ginseng as a perennial herb of Araliaceae, exhibits pharmacological effects such as central nervous system stimulation, anti-tumor properties, and cardiovascular and cerebrovascular protection. The B3 gene family plays a crucial role in growth and development, antioxidant activity, stress resistance, and secondary metabolism regulation of plants and has been extensively studied in various plants. However, the identification and analysis of the B3 gene family in P. ginseng have not been reported. In this study, a total of 145 B3 genes(PgB3s) with complete open reading frames(ORF) were identified from P. ginseng and classified into five subfamilies based on domain types. Through correlation analysis with ginsenoside content, SNP/InDels analysis, and interaction analysis with key enzyme genes, 15 PgB3 transcripts were found to be significantly correlated with ginsenoside content and exhibited a close interaction network with key enzyme genes involved in ginsenoside biosynthesis, which indicated that these genes may participate in the regulation of ginsenoside biosynthesis. Additionally, this study found that PgB3 genes exhibited induced expression in response to methyl jasmonate(MeJA) stress, which aligned with the presence of abundant stress response elements in their promoters, confirming the important role of the B3 gene family in P. ginseng in stress resistance. The results of this study revealed the potential functions of PgB3 genes in ginsenoside biosynthesis and stress response, providing a significant theoretical basis for further research on the functions of PgB3 genes and their regulatory mechanisms.
Panax/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Ginsenosides/biosynthesis*
;
Multigene Family
;
Phylogeny
5.Effects of ginsenoside Rb_1 on liver FXR pathway and liver and fecal bile acid profiles in rats induced by high-fat diet based on targeted metabolomics.
Xue LENG ; Yang LI ; Qi WANG ; Xin-Tong LI ; Mei-Jun LYU ; Yan-Na SUN
China Journal of Chinese Materia Medica 2025;50(16):4649-4658
A targeted metabolomics study was conducted on the bile acid profiles in the liver and feces of rats induced by a high-fat diet and intervened by ginsenoside Rb_1, along with the detection of FXR pathway gene expression in the liver, to explore and clarify its mechanism of action. The content of biochemical indicators in the serum were detected using an automatic biochemical analyzer. Hematoxylin and eosin(HE) staining and oil red O staining were used to detect pathological changes and lipid deposition in the liver. RT-PCR was used to detect the mRNA expression of FXR, small heterodimer partner(SHP), cholesterol 7 alpha-hydroxylase(CYP7A1), and sterol regulatory element-binding protein-1c(SREBP-1c) in the liver. Targeted bile acid metabolomics technology was employed to analyze changes in bile acid profiles in liver tissue and feces, and a correlation analysis was performed between key genes such as FXR, SHP, CYP7A1, SREBP-1c and differential bile acid metabolites. The results showed that ginsenoside Rb_1 significantly reduced the levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and high-density lipoprotein cholesterol(HDL-C) in the serum, alleviated the large fat vacuoles and lipid deposition in the liver, increased the expression of FXR mRNA in the liver, and decreased the expression of SREBP-1c mRNA. The expression of CYP7A1 and SHP mRNA was increased, but the differences were not statistically significant. Targeted bile acid metabolomics showed that ginsenoside Rb_1 could restore the levels of 9 bile acids in the liver and 8 bile acids in the feces. Ginsenoside Rb_1 also increased the percentage of taurocholic acid(TCA) in the liver(56.78%) and the percentage of 12-ketolithocholic acid(12-KLCA) in the feces(26.10%). Pathway enrichment analysis revealed two pathways involved in bile acid metabolism: primary bile acid biosynthesis and taurine and hypotaurine metabolism. Correlation analysis showed that FXR, SHP, CYP7A1, and SREBP-1c were positively correlated with multiple differential bile acids. These results suggest that ginsenoside Rb_1 may intervene in lipid metabolism disorders induced by a high-fat diet by regulating the FXR pathway and modulating bile acid profiles in the liver and feces.
Animals
;
Bile Acids and Salts/metabolism*
;
Rats
;
Ginsenosides/pharmacology*
;
Male
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Liver/drug effects*
;
Diet, High-Fat/adverse effects*
;
Metabolomics
;
Rats, Sprague-Dawley
;
Feces/chemistry*
;
Cholesterol 7-alpha-Hydroxylase/metabolism*
;
Sterol Regulatory Element Binding Protein 1/genetics*
;
Humans
6.Ginsenoside-Rg5 Synergizes with Imatinib to Enhances the Anti-Chronic Myeloid Leukemia K562 Cell Activity through PI3K/AKT/mTOR Pathway.
Di JIN ; Chang-Qing GUI ; Qian-Qian YE ; Guo-Fang DENG ; Chang-Ling ZHU ; Li XU
Journal of Experimental Hematology 2025;33(1):1-8
OBJECTIVE:
To investigate the synergistic effect and its mechanism of ginsenoside-Rg5 in combination with imatinib in inhibiting proliferation of chronic myeloid leukemia K562 cells.
METHODS:
K562 cells were treated with ginsenoside-Rg5 and imatinib. Cell survival was detected by CCK-8 assay, and IC50 were calculated separately for each drug. Based on the value of IC50 of ginsenoside-Rg5 and imatinib, an appropriate concentration gradient was selected for the combination. The synergistic effect of the two drug was analyzed using the online software synergy finder. The effects of single or combination therapy on apoptosis rate and the cell cycle distribution of K562 cells were analyzed by flow cytometry. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway related proteins and apoptosis related proteins in K562 cells after single or combination therapy.
RESULTS:
Ginsenoside-Rg5 and imatinib were able to inhibit the proliferative activity of K562 cells in a dosedependent manner(r =-0.991, r =-0.942). The synergy score ZIP >10 was measured by Synergy Finder online software, indicating that ginsenoside-Rg5 and imatinib act synergistically on K562 cells. The apoptotic rates of K562 cells after single treatments with ginsenoside-Rg5 and imatinib were 11.96% and 8.13%, respectively, while the rate increased to 21.35% with the combination of two drugs, the apoptosis rate in the combination group was higher than that in the single-drug group ( P <0.05). The proportion of K562 cells in the G0/G1 phase was significantly increased with the combined treatment of two drugs( P <0.05). The protein expression levels of p-PI3K, p-AKT, p-mTOR in K562 cells treated with the combination were significantly decreased, with noticeable downregulation of BCL-2 and upregulation of BAX, leading to a decreased Bcl-2/BAX ratio, while no significant changes were observed in the non-phosphorylated forms of PI3K, AKT, and mTOR proteins.
CONCLUSION
The combination of ginsenoside-Rg5 and imatinib can inhibit the proliferation of CML cells and induce apoptosis, and the mechanism may act through PI3K/AKT/mTOR signaling pathways.
Humans
;
Ginsenosides/pharmacology*
;
Imatinib Mesylate
;
K562 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction/drug effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism*
;
Drug Synergism
;
Apoptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Proliferation/drug effects*
7.Salvianolic Acid B and Ginsenoside Rg1 Combination Attenuates Cerebral Edema Accompanying Glymphatic Modulation.
Lingxiao ZHANG ; Yanan SHAO ; Zhao FANG ; Siqi CHEN ; Yixuan WANG ; Han SHA ; Yuhan ZHANG ; Linlin WANG ; Yi JIN ; Hao CHEN ; Baohong JIANG
Neuroscience Bulletin 2025;41(11):1909-1923
Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h. GS function was assessed by Evans blue imaging, near-infrared fluorescence region II (NIR-II) imaging, and magnetic resonance imaging (MRI). SalB/Rg1 had significant effects on reducing the infarct volume and hemorrhagic transformation score, improving neurobehavioral function, and protecting tissue structure, especially inhibiting cerebral edema. Meanwhile, the influx/efflux drainage of GS was enhanced by SalB/Rg1 according to NIR-II imaging and MRI. SalB/Rg1 inhibited matrix metalloproteinase-9 (MMP-9) activity, reduced cleaved β-dystroglycan (β-DG), and stabilized aquaporin-4 (AQP4) polarity, which was verified by colocalization with CD31. Our findings indicated that SalB/Rg1 treatment enhances GS function and attenuates cerebral edema, accompanying the regulation of the MMP9/β-DG/AQP4 pathway.
Animals
;
Ginsenosides/administration & dosage*
;
Brain Edema/etiology*
;
Male
;
Benzofurans/administration & dosage*
;
Glymphatic System/diagnostic imaging*
;
Mice
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Aquaporin 4/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Matrix Metalloproteinase 9/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Depsides
8.Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis.
Yongsheng FANG ; Zhiyun ZHU ; Chun XIE ; Dazhen XIA ; Huimin ZHAO ; Zihui WANG ; Qian LU ; Caimei ZHANG ; Wenyong XIONG ; Xiaodong YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):920-931
Saponins associated with Panax notoginseng (P. notoginseng) demonstrate significant therapeutic efficacy across multiple diseases. However, certain high-yield saponins face limited clinical applications due to their reduced pharmacological efficacy. This study synthesized and evaluated 36 saponin-1,2,3-triazole derivatives of ginsenosides Rg1/Rb1 and notoginsenoside R1 for anti-adipogenesis activity in vitro. The research revealed that the ginsenosides Rg1-1,2,3-triazole derivative a17 demonstrates superior adipogenesis inhibitory effects. Structure-activity relationships (SARs) analysis indicates that incorporating an amidyl-substituted 1,2,3-triazole into the saponin side chain via Click reaction enhances anti-adipogenesis activity. Additionally, several other derivatives exhibit general adipogenesis inhibition. Compound a17 demonstrated enhanced potency compared to the parent ginsenoside Rg1. Mechanistic investigations revealed that a17 exhibits dose-dependent inhibition of adipogenesis in vitro, accompanied by decreased expression of preadipocytes. Peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4) adipogenesis regulators. These findings establish the ginsenoside Rg1-1,2,3-triazole derivative a17 as a promising adipocyte differentiation inhibitor and potential therapeutic agent for obesity and associated metabolic disorders. This research provides a foundation for developing effective therapeutic approaches for various metabolic syndromes.
Adipogenesis/drug effects*
;
Triazoles/chemical synthesis*
;
Ginsenosides/chemical synthesis*
;
Saponins/chemical synthesis*
;
Animals
;
Mice
;
Structure-Activity Relationship
;
PPAR gamma/genetics*
;
3T3-L1 Cells
;
Adipocytes/metabolism*
;
Panax notoginseng/chemistry*
;
Drug Design
;
Molecular Structure
;
Humans
;
Cell Differentiation/drug effects*
;
Fatty Acid-Binding Proteins/genetics*
9.The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus.
Qian CHEN ; Shuying ZHANG ; Xuanxi JIANG ; Jie LIAO ; Xin SHAO ; Xin PENG ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):997-1008
Coptis chinensis Franch. and Panax ginseng C. A. Mey. are traditional herbal medicines with millennia of documented use and broad therapeutic applications, including anti-diabetic properties. However, the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus (T2DM) and its underlying mechanism remain unclear. The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1, exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes. This combination demonstrated significant synergistic effects in improving glucose tolerance, reducing fasting blood glucose (FBG), the weight ratio of epididymal white adipose tissue (eWAT), and the homeostasis model assessment of insulin resistance (HOMA-IR) in leptin receptor-deficient (db/db) mice. Subsequently, a T2DM liver-specific network was constructed based on RNA sequencing (RNA-seq) experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions (PPIs). The network recovery index (NRI) score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components. The research identified that activated adenosine 5'-monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling in the liver played a crucial role in the synergistic treatment of T2DM, as verified by western blot experiment in db/db mice. These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice, surpassing the efficacy of individual treatments. The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity.
Animals
;
Panax/chemistry*
;
Ginsenosides/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Mice
;
Male
;
Alkaloids/pharmacology*
;
Coptis/chemistry*
;
Drug Synergism
;
Insulin Resistance
;
Mice, Inbred C57BL
;
Humans
;
Transcriptome/drug effects*
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hepatocytes/metabolism*
10.Ginsenoside Rb3 regulates the phosphorrylated extracellular signal-regulated kinase signaling pathway to alleviate inflammatory responses and promote osteogenesis in rats with periodontitis.
Xueying ZHANG ; Xin MENG ; Zhizhen LIU ; Kang ZHANG ; Honghai JI ; Minmin SUN
West China Journal of Stomatology 2025;43(2):236-248
OBJECTIVES:
To explore the promoting effect of ginsenoside Rb3 (Rb3) on osteogenesis in periodontitis environment, and to explain its mechanism.
METHODS:
Human periodontal ligament stem cells (hPDLSCs) were cultured by tissue block method and identified by flow cytometry. Cell counting kit-8 (CCK8) method and calcein acetoxymethyl ester/propidium iodide staining were used to detect the effect of Rb3 on the viability of hPDLSCs cells. In vitro cell experiments were divided into control group, 10 μg/mL lipopolysaccharides (LPS) group, 10 μg/mL LPS+100 μmol/L Rb3 group and 10 μg/mL LPS+200 μmol/L Rb3 group. Alkaline phosphatase (ALP) staining was used to detect the ALP activity of hPDLSCs in each group after osteogenesis induction. The expression of hPDLSCs interleukin-6 (IL-6), interleukin-8 (IL-8), runt-related transcription factor 2 (RUNX2) and transforming growth factor-β (TGF-β)genes in each group after osteogenesis was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Western blot was used to detect the protein expression of hPDLSCs phosphorrylated extracellular signal-regulated kinase (p-ERK) in each group. Sprague-Dawley rats were randomly divided into the control group, ligation group and ligation+Rb3 group. The left molar-maxillary tissue was subjected to micro-computed tomography (micro-CT) scanning. After the scanning, the left molar-maxilla was made into periodontal tissue sections. Hematoxylin-eosin (HE) staining was used to detect the infiltration and loss of adhesion of inflammatory cells. Masson staining was used to detect the destruction of gingival collagen fibers. Immunofluorescence staining was used to detect the protein expression of RUNX2 and p-ERK. The expression of TGF-β in rat gingival tissue was detected by qRT-PCR. The protein expression of IL-6 in peripheral serum of rats was detected by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to detect the proportion of Treg cells in rat heart blood. The experimental data were statistically analyzed by Graph Pad Prism10.1.2 software.
RESULTS:
Rb3 had no effect on the cell activity of hPDLSCs. The results of qRT-PCR and ALP staining showed that Rb3 could inhibit the gene expression of IL-6 and IL-8 in inflammatory hPDLSCs, promote TGF-β gene and promote the osteogenic differentiation of inflammatory hPDLSCs. Western blot showed that Rb3 inhibited the protein expression of inflammatory hPDLSCs p-ERK. The results from micro-CT, Masson staining, and HE staining demonstrated that Rb3 promotes alveolar bone formation in rats with periodontitis, while simultaneously inhibiting the destruction of periodontal fibrous tissue, reducing attachment loss, and suppressing inflammatory cell infiltration. The results of flow cytometry showed that Rb3 could promote the differentiation of Treg cells in peripheral blood of periodontitis rats. The results of ELISA and qRT-PCR showed that Rb3 could inhibit the protein expression of IL-6 and promote the gene expression of TGF-β in periodontitis rats. Immunofluorescence results showed that Rb3 could promote the protein expression of RUNX2 and inhibit the protein expression of p-ERK in periodontitis rats.
CONCLUSIONS
Rb3 can reduce the inflammatory reaction of periodontal tissues in periodontitis rats, and promote the osteogenic differentiation of hPDLSCs by regulating p-ERK pathways.
Animals
;
Ginsenosides/pharmacology*
;
Osteogenesis/drug effects*
;
Periodontitis/metabolism*
;
Rats
;
Periodontal Ligament/cytology*
;
Humans
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Stem Cells/drug effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Interleukin-8/metabolism*
;
Cells, Cultured
;
MAP Kinase Signaling System/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Male
;
Phosphorylation
;
Lipopolysaccharides
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Alkaline Phosphatase/metabolism*

Result Analysis
Print
Save
E-mail