1.Analysis of soft tissue healing after keratinized tissue augmentation in reconstructed jaws.
Junnan NIE ; Jiayun DONG ; Ruifang LU
Journal of Peking University(Health Sciences) 2025;57(1):57-64
OBJECTIVE:
To evaluate the wound healing of recipient and donor sites following keratinized mucosa augmentation (KMA) around implants in reconstructed jaw areas and to compare these outcomes with gingival grafts in native jawbone, so as to provide clinical guidance for postoperative maintenance, and to investigate the impact of clinical experience on the evaluation of KMA postoperative healing through subgroup comparisons.
METHODS:
This study included patients who underwent resection of maxillofacial tumors, fibular or iliac flap reconstruction, and implant placement at Peking University Dental Hospital from October 2020 to April 2023. Three months post-implant placement, the patients were referred for KMA procedures. Clinical photographs of the reconstructed area were taken preoperatively, immediately postoperatively, and 3 weeks and 3 months post-surgery. Additionally, photographs of the palatal donor site were obtained preoperatively and 3 weeks later. Wound healing was assessed by four junior and three senior clinicians utilizing the early healing index (EHI), early wound healing score (EHS), and pink esthetic score (PES).And senior clinicians evaluated the healing effect compared with gingival transplantation on natural jawbone using a 10-point scale.
RESULTS:
A total of 26 patients with jawbone reconstruction were included, with an average age of (34.2±10.2) years, 11 males (42.3%) and 15 females (57.7%). Among them, 13 cases (50.0%) underwent fibula flap reconstruction, and 13 cases (50.0%) underwent iliac flap reconstruction. The average number of implants per patient was 3.2±0.7. In the recipient area, 3 weeks postoperatively, the EHS was 7.0 (4.0, 9.0), with sub-item scores as follows: Clinical signs of re-epithelialization (CSR) 6.0 (3.0, 6.0), clinical signs of haemostasis (CSH) 1.5 (1.0, 2.0), and clinical signs of inflammation (CSI) 1.0 (0.0, 1.0), indicating that the average appearance of the wound in the recipient area was characterized by generally well-approximated wound edges with minimal fibrin lines and mild erythema and swelling. The EHI for the recipient area was 2.0 (1.5, 2.5), suggesting that the incision was mostly closed with some fibrin lines 3 weeks postoperatively. The long-term healing evaluation system, PES, was 2.5 (2.0, 3.0), with sub-scores for color [1.0 (1.0, 1.5)] and texture [1.5 (1.0, 2.0)], which were slightly different from the reference values.In the palatal donor area, 3 weeks postoperatively, the EHI score was lower at 1.3 (1.0, 2.5), while the EHS score was higher at 8.5 (6.0, 10.0), indicating better soft tissue healing in the donor area compared with the recipient area. Among the clinicians with different levels of experience, the assessment of wound healing revealed that except for the CSI sub-item, where the junior group scored higher than the senior group, all other sub-items showed significantly higher scores in the senior group compared with the junior group. In the EHS evaluation system, the CSH sub-item demonstrated no significant differences between the groups with varying levels of experience. Experienced clinicians' evaluation outcomes of healing effect compared with gum graft on natural alveolar bone was 8.5 (7.5, 9.5), showing high consistency [intraclass correlation coefficient (ICC): 0.892; 95% confidence interval (CI): 0.791-0.949], suggesting slightly suboptimal healing results after KMA surgery.
CONCLUSION
The healing process following KMA in the context of jawbone reconstruction is relatively protracted, emphasizing the necessity for comprehensive postoperative management. Moreover, clinician experience plays a significant role in the assessment of wound healing outcomes for KMA in maxillofacial reconstruction.
Humans
;
Wound Healing
;
Adult
;
Male
;
Female
;
Gingiva/transplantation*
;
Plastic Surgery Procedures/methods*
;
Middle Aged
;
Surgical Flaps
;
Keratins
2.Mitochondria derived from human embryonic stem cell-derived mesenchymal stem cells alleviate the inflammatory response in human gingival fibroblasts.
Bicong GAO ; Chenlu SHEN ; Kejia LV ; Xuehui LI ; Yongting ZHANG ; Fan SHI ; Hongyan DIAO ; Hua YAO
Journal of Zhejiang University. Science. B 2025;26(8):778-788
Periodontitis is a common oral disease caused by bacteria coupled with an excessive host immune response. Stem cell therapy can be a promising treatment strategy for periodontitis, but the relevant mechanism is complicated. This study aimed to explore the therapeutic potential of mitochondria from human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) for the treatment of periodontitis. The gingival tissues of periodontitis patients are characterized by abnormal mitochondrial structure. Human gingival fibroblasts (HGFs) were exposed to 5 μg/mL lipopolysaccharide (LPS) for 24 h to establish a cell injury model. When treated with hESC-MSCs or mitochondria derived from hESC-MSCs, HGFs showed reduced expression of inflammatory genes, increased adenosine triphosphate (ATP) level, decreased reactive oxygen species (ROS) production, and enhanced mitochondrial function compared to the control. The average efficiency of isolated mitochondrial transfer by hESC-MSCs was determined to be 8.93%. Besides, a therapy of local mitochondrial injection in mice with LPS-induced periodontitis showed a reduction in inflammatory gene expression, as well as an increase in both the mitochondrial number and the aspect ratio in gingival tissues. In conclusion, our results indicate that mitochondria derived from hESC-MSCs can reduce the inflammatory response and improve mitochondrial function in HGFs, suggesting that the transfer of mitochondria between hESC-MSCs and HGFs serves as a potential mechanism underlying the therapeutic effect of stem cells.
Humans
;
Gingiva/cytology*
;
Fibroblasts/metabolism*
;
Mitochondria/physiology*
;
Mesenchymal Stem Cells/cytology*
;
Animals
;
Periodontitis/therapy*
;
Mice
;
Reactive Oxygen Species/metabolism*
;
Inflammation
;
Lipopolysaccharides
;
Human Embryonic Stem Cells/cytology*
;
Cells, Cultured
;
Adenosine Triphosphate/metabolism*
;
Male
3.Physiologically relevant coculture model for oral microbial-host interactions.
Zeyang PANG ; Nicole M CADY ; Lujia CEN ; Thomas M SCHMIDT ; Xuesong HE ; Jiahe LI
International Journal of Oral Science 2025;17(1):42-42
Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications. In vitro bacteria-host cell coculture models have enabled fundamental studies to characterize bacterial infection and host responses in a reductionist yet reproducible manner. However, existing in vitro coculture models fail to establish conditions that are suitable for the growth of both mammalian cells and anaerobes, thereby hindering a comprehensive understanding of their interactions. Here, we present an asymmetric gas coculture system that simulates the oral microenvironment by maintaining distinct normoxic and anaerobic conditions for gingival epithelial cells and anaerobic bacteria, respectively. Using a key oral pathobiont, Fusobacterium nucleatum, as the primary test bed, we demonstrate that the system preserves bacterial viability and supports the integrity of telomerase-immortalized gingival keratinocytes. Compared to conventional models, this system enhanced bacterial invasion, elevated intracellular bacterial loads, and elicited more robust host pro-inflammatory responses, including increased secretion of CXCL10, IL-6, and IL-8. In addition, the model enabled precise evaluation of antibiotic efficacy against intracellular pathogens. Finally, we validate the ability of the asymmetric system to support the proliferation of a more oxygen-sensitive oral pathobiont, Porphyromonas gingivalis. These results underscore the utility of this coculture platform for studying oral microbial pathogenesis and screening therapeutics, offering a physiologically relevant approach to advance oral and systemic health research.
Coculture Techniques/methods*
;
Humans
;
Fusobacterium nucleatum/physiology*
;
Gingiva/microbiology*
;
Keratinocytes/microbiology*
;
Host Microbial Interactions
;
Mouth/microbiology*
;
Host-Pathogen Interactions
;
Epithelial Cells/microbiology*
;
Cells, Cultured
;
Porphyromonas gingivalis
4.Single-cell spatial atlas of smoking-induced changes in human gingival tissues.
Yong ZHANG ; Zongshan SHEN ; Jiayu YANG ; Junxian REN ; Chi ZHANG ; Lingping TAN ; Li GAO ; Chuanjiang ZHAO
International Journal of Oral Science 2025;17(1):60-60
Smoking is a well-established risk factor for periodontitis, yet the precise mechanisms by which smoking contributes to periodontal disease remain poorly understood. Recent advances in spatial transcriptomics have enabled a deeper exploration of the periodontal tissue microenvironment at single-cell resolution, offering new opportunities to investigate these mechanisms. In this study, we utilized Visium HD single-cell spatial transcriptomics to profile gingival tissues from 12 individuals, including those with periodontitis, those with smoking-associated periodontitis, and healthy controls. Our analysis revealed that smoking disrupts the epithelial barrier integrity, induces fibroblast alterations, and dysregulates fibroblast-epithelial cell communication, thereby exacerbating periodontitis. The spatial analysis showed that endothelial cells and macrophages are in close proximity and interact, which further promotes the progression of smoking-induced periodontal disease. Importantly, we found that targeting the endothelial CXCL12 signalling pathway in smoking-associated periodontitis reduced the proinflammatory macrophage phenotype, alleviated epithelial inflammation, and reduced alveolar bone resorption. These findings provide novel insights into the pathogenesis of smoking-associated periodontitis and highlight the potential of targeting the endothelial-macrophage interaction as a therapeutic strategy. Furthermore, this study establishes an essential information resource for investigating the effects of smoking on periodontitis, providing a foundation for future research and therapeutic development for this prevalent and debilitating disease.
Humans
;
Gingiva/cytology*
;
Smoking/adverse effects*
;
Male
;
Periodontitis/pathology*
;
Single-Cell Analysis
;
Female
;
Adult
;
Middle Aged
;
Macrophages
;
Fibroblasts
;
Endothelial Cells
;
Case-Control Studies
;
Chemokine CXCL12/metabolism*
5.Geometric position relationship between gingival, preparation, restoration margins and the cementation (adhesive) layer in the marginal area: new classification and scheme for margin position.
West China Journal of Stomatology 2025;43(2):163-174
The current low quality of fixed restoration margins is highly correlated with the high incidence of margin-related complications. It is also related to the unclear spatiotemporal geometric position relationship among the consensus definitions of the gingival margin (G), preparation margin (P), and restoration margin (R). This paper discusses the existing problem of the existing term "gingival margin" as a surface anatomical landmark; proposes the term "free gingival margin line" that conforms to geometry and measurement and has importance as a surface anatomical landmark; and clarifies the participants that exist in the marginal area. These participants include the P, R, and G; cementation (adhesive) layer; and gingival sulcus. Moreover, this paper discusses the various iatrogenic damages induced by entering the gingival sulcus via the P, R, and cementing (adhesive) layer. Through the discussion of the design deficiencies of the subgingival and biologically oriented preparation technique, the physiological and clinical importance of the concept of gingival sulcus/gingival sulcus fluid + supercrestal tissue attachment (biological width) = first periodontal protective barrier was analyzed. The value of preserving the physiological role of the gingival sulcus is emphasized. Furthermore, the newly defined RPG distance represents the distance between the successive P or R line and free G line and can be measured in the clinical procedure of tooth preparation. The optimal solution is 0-200 µm, that is, RPG200: the P and R are located on the free G line and the distance between these margins is less than 200 µm. This distance not only has the aesthetic effect of invisibility to the naked eye, it also has a minimal effect on the G and gingival sulcus and is convenient for doctors and patients to clean. Furthermore, in accordance with the positional relationship between the three margins and cementation (adhesive) layer, a new classification of marginal positions is proposed. This classification overcomes the problems of incomplete inclusion objects and uncontrolled risk factors in the previous classification. It also has the advantages of strong practicability, good efficiency of main control geometric quantity, and clear risk control points. The new design scheme and classification of the margi-nal position of RPG200 proposed in this paper provide a new understanding for margin design and complication prevention in the future.
Humans
;
Gingiva/anatomy & histology*
;
Cementation
;
Dental Restoration, Permanent/methods*
6.Clinical exploration and practice of a 16-step new model of comfortable supragingival scaling.
Yue CHEN ; Jinyang LI ; Yazheng WANG ; Jing LI ; Jin LIU ; Yumeng ZHOU ; Ang LI
West China Journal of Stomatology 2025;43(5):628-635
Comfortable supragingival scaling uses ultrasonic cleaning with sedation and minimally invasive techniques to minimize the negative emotions of patients and improve patient compliance. At present, there is still much room for optimization of the environment, equipment, and operation steps for the development of comfortable supragingival scaling. On this basis, the Department of Periodontology, College of Stomatology, Xi'an Jiaotong University proposed a 16-step new model of comfortable supragingival scaling. The new model incorporates adjustments to the previous model concerning the environment, equipment, operational procedures, process links and services, comprising 16 steps for optimization and innovation. Clinical practice has confirmed that the 16-step new model of comfortable supra-gingival scaling can significantly improve patient satisfaction and adherence to medical treatment, and it has good promotional value.
Humans
;
Dental Scaling/instrumentation*
;
Patient Satisfaction
;
Patient Compliance
;
Gingiva
7.Correlation analysis of cell-free DNA in gingival crevicular fluid with periodontal clinical indicators and cyclic guanosine phosphate-adenosine phosphate synthase-stimulator of interferon genes signaling pathway.
Lan CHEN ; Xuanzhi ZHU ; Jieyu ZHOU ; Jiyao LI ; Lei ZHAO
West China Journal of Stomatology 2025;43(6):808-818
OBJECTIVES:
This study aims to explore the potential relationships of cell-free DNA (cfDNA) in gingival crevicular fluid (GCF) with periodontal clinical indicators and the expression of DNA receptor pathway cyclic guanosine phosphate-adenosine phosphate synthase (cGAS)-stimulator of interferon genes (STING) in gingival tissues and human gingival fibroblasts (HGFs).
METHODS:
GCF and gingival tissue samples were collected from periodontally healthy individuals and patients diagnosed with periodontitis. Periodontal clinical indicators were recorded, including plaque index (PLT), bleeding index (BI), probing depth (PD), and clinical attachment level (CAL). The concentration of cfDNA in GCF was quantified, and the correlation between GCF and periodontal clinical indicators was analyzed. Immunofluorescence and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to assess the distribution of cGAS, STING, and p-STING in gingival tissues. Additionally, the mRNA expression levels of the key components of the cGAS-STING signaling pathway, namely, cGAS, STING, inhibitory of kappa-B kinase (IKK), nuclear factor kappa-B p65 (NF-κB p65), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), were measured. Furthermore, cfDNA extracted from GCF was employed to stimulate HGFs in the healthy control and periodontitis groups, and the mRNA expression levels of the key molecules of cGAS-STING signaling pathway were detected through Western blot and RT-qPCR.
RESULTS:
The concentration of cfDNA in GCF was found to be significantly elevated in the periodontitis group compared with the control group. Moreover, cfDNA concentration demonstrated a strong positive correlation with the periodontal clinical indicators. Immunofluorescence analysis revealed considerably increased percentage of fluorescence co-localization of cGAS, STING, and p-STING with the gingival fibroblast FSP-1 marker in the gingival tissues of the periodontitis group. The mRNA expression levels of cGAS, STING, IKK, NF-κB p65, IL-1β, IL-6,and TNF-α were significantly higher in the periodontitis group. In vitro stimulation of HGFs with GCF-derived cfDNA resulted in increased protein expression of cGAS and p-STING and considerably upregulated the mRNA expression levels of cGAS, STING, IKK, NF-κB p65, IL-1β, IL-6, and TNF-α in the healthy and periodontitis groups compared with the blank group. Correlation analysis showed that the concentration of cfDNA at the sampling site was positively correlated with the mRNA expression levels of cGAS, STING, NF-κB p65, and IL-6 in gingival tissues.
CONCLUSIONS
cfDNA concentrations in the GCF of patients with periodontitis are considerably elevated, and are associated with the activation of the cGAS-STING signaling pathway in HGFs. These findings suggest that cfDNA contributes to the progression of periodontitis.
Humans
;
Gingival Crevicular Fluid/metabolism*
;
Signal Transduction
;
Gingiva/cytology*
;
Nucleotidyltransferases/genetics*
;
Membrane Proteins/genetics*
;
Cell-Free Nucleic Acids/analysis*
;
Fibroblasts/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Periodontitis/metabolism*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Adult
;
RNA, Messenger/metabolism*
;
Male
;
Female
8.Three-dimensional finite element analysis of cement flow in abutment margin-crown platform switching.
Meng En OU ; Yun DING ; Wei Feng TANG ; Yong Sheng ZHOU
Journal of Peking University(Health Sciences) 2023;55(3):548-552
OBJECTIVE:
To analyze the cement flow in the abutment margin-crown platform switching structure by using the three-dimensional finite element analysis, in order to prove that whether the abutment margin-crown platform switching structure can reduce the inflow depth of cement in the implantation adhesive retention.
METHODS:
By using ANSYS 19.0 software, two models were created, including the one with regular margin and crown (Model one, the traditional group), and the other one with abutment margin-crown platform switching structure (Model two, the platform switching group). Both abutments of the two models were wrapped by gingiva, and the depth of the abutment margins was 1.5 mm submucosal. Two-way fluid structure coupling calculations were produced in two models by using ANSYS 19.0 software. In the two models, the same amount of cement were put between the inner side of the crowns and the abutments. The process of cementing the crown to the abutment was simulated when the crown was 0.6 mm above the abutment. The crown was falling at a constant speed in the whole process spending 0.1 s. Then we observed the cement flow outside the crowns at the time of 0.025 s, 0.05 s, 0.075 s, 0.1 s, and measured the depth of cement over the margins at the time of 0.1 s.
RESULTS:
At the time of 0 s, 0.025 s, 0.05 s, the cements in the two models were all above the abutment margins. At the time of 0.075 s, in Model one, the gingiva was squeezed by the cement and became deformed, and then a gap was formed between the gingiva and the abutment into which the cement started to flow. In Model two, because of the narrow neck of the crown, the cement flowed out from the gingival as it was pressed by the upward counterforce from the gingival and the abutment margin. At the time of 0.1 s, in Model one, the cement continued to flow deep inside with the gravity force and pressure, and the depth of the cement over the margin was 1 mm. In Model two, the cement continued to flow out from the gingival at the time of 0.075 s, and the depth of the cement over the margin was 0 mm.
CONCLUSION
When the abutment was wrapped by the gingiva, the inflow depth of cement in the implantation adhesive retention can be reduced in the abutment margin-crown platform switching structure.
Finite Element Analysis
;
Cementation/methods*
;
Gingiva
;
Crowns
;
Dental Abutments
;
Dental Cements
;
Dental Stress Analysis
9.Double heterozygous pathogenic mutations in KIF3C and ZNF513 cause hereditary gingival fibromatosis.
Jianfan CHEN ; Xueqing XU ; Song CHEN ; Ting LU ; Yingchun ZHENG ; Zhongzhi GAN ; Zongrui SHEN ; Shunfei MA ; Duocai WANG ; Leyi SU ; Fei HE ; Xuan SHANG ; Huiyong XU ; Dong CHEN ; Leitao ZHANG ; Fu XIONG
International Journal of Oral Science 2023;15(1):46-46
Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
Animals
;
Humans
;
Mice
;
Fibromatosis, Gingival/pathology*
;
Gingiva
;
Kinesins/genetics*
;
Mutation/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
10.Comparison of the efficacy and long-term stability of tunnel technique and coronally advanced flap in the treatment of gingival recession: a Meta-analysis.
Xiaoming CHENG ; Rui TANG ; Zili GE
West China Journal of Stomatology 2023;41(4):450-462
OBJECTIVES:
This study aimed to evaluate the efficacy and long-term stability of tunnel technique (TUN) and coronally advanced flap (CAF) combined with connective tissue graft (CTG) in treating gingival recession.
METHODS:
Databases including PubMed, Web of Science, Embase, and CNKI were electronically searched to collect randomized controlled trial (RCT) of CAF+CTG compared to TUN+CTG in the treatment of Miller class Ⅰ or Ⅱ gingival recession on September 1, 2022.
RESULTS:
There were 8 RCTs with 305 patients (454 recession sites) participating. The results of the Meta-analysis revealed that, in terms of mean root coverage (MRC) of main indicators, no significant difference was found between the CAF group and the TUN group in both short- and long-term results, which were [MD: 1.45%, 95%CI (-2.93%, 5.82%), P=0.52] and [MD: -0.70%, 95%CI (-6.41%, 5.00%), P=0.81]. However, the CAF group outperformed the TUN group in the long term [MD: 5.69%, 95%CI (0.87%, 10.50%), P=0.02], and the results of complete root coverage (CRC) analysis were similar to those of MRC. In the short term, the TUN group grew keratinized gingiva significantly faster than the CAF group [MD: -0.38 mm, 95%CI (-0.67 mm, -0.10 mm), P=0.008]. Long-term findings revealed no significant difference between the two groups [MD: -0.26 mm, 95%CI (-0.94 mm, 0.43 mm), P=0.46]. The TUN group's secondary index root coverage esthetic score (RES) was statistically significantly higher than the CAF group's [MD: 0.62, 95%CI (0.28, 0.96), P=0.000 3]. Given that there were few results included in the literature and the heterogeneity was too great, no significant difference was observed in the postoperative VAS pain index score [MD: 0.53, 95%CI (-1.96, 3.03), P=0.68].
CONCLUSIONS
This study discovered that both CAF+CTG and TUN+CTG can achieve good root coverage in treating gingival recession, with CAF outperforming TUN and both groups achie-ving good long-term stability. After the operation, the TUN group had a higher RES than the CAF group. Given the limitations of this study, more high-quality studies are needed in the future to demonstrate the efficacy of TUN in gingival retraction surgery.
Humans
;
Gingival Recession/surgery*
;
Treatment Outcome
;
Tooth Root
;
Esthetics, Dental
;
Gingiva/surgery*

Result Analysis
Print
Save
E-mail