1.Transcriptome sequencing reveals molecular mechanism of seed dormancy release of Zanthoxylum nitidum.
Chang-Qian QUAN ; Dan-Feng TANG ; Jian-Ping JIANG ; Yan-Xia ZHU
China Journal of Chinese Materia Medica 2025;50(1):102-110
The transcriptome sequencing based on Illumina Novaseq 6000 Platform was performed with the untreated seed embryo(DS), stratified seed embryo(SS), and germinated seed embryo(GS) of Zanthoxylum nitidum, aiming to explore the molecular mechanism regulating the seed dormancy and germination of Z. nitidum and uncover key differentially expressed genes(DEGs). A total of 61.41 Gb clean data was obtained, and 86 386 unigenes with an average length of 773.49 bp were assembled. A total of 29 290 DEGs were screened from three comparison groups(SS vs DS, GS vs SS, and GS vs DS), and these genes were annotated on 134 Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways. KEGG enrichment analysis revealed that the plant hormone signal transduction pathway is the richest pathway, containing 226 DEGs. Among all DEGs, 894 transcription factors were identified, which were distributed across 34 transcription factor families. These transcription factors were also mainly concentrated in plant hormone signal transduction and mitogen-activated protein kinase(MAPK) signaling pathways. Further real-time quantitative polymerase chain reaction(RT-qPCR) validation of 12 DEGs showed that the transcriptome data is reliable. During the process of seed dormancy release and germination, a large number of DEGs involved in polysaccharide degradation, protein synthesis, lipid metabolism, and hormone signal transduction were expressed. These genes were involved in multiple metabolic pathways, forming a complex regulatory network for dormancy and germination. This study lays a solid foundation for analyzing the molecular mechanisms of seed dormancy and germination of Z. nitidum.
Zanthoxylum/metabolism*
;
Plant Dormancy/genetics*
;
Seeds/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Transcriptome
;
Gene Expression Profiling
;
Germination
;
Transcription Factors/metabolism*
;
Plant Growth Regulators/genetics*
;
Signal Transduction
2.One-year seedling cultivation technology and seed germination-promoting mechanism by warm water soaking of Polygonatum kingianum var. grandifolium.
Ke FU ; Jian-Qing ZHOU ; Zhi-Wei FAN ; Mei-Sen YANG ; Ya-Qun CHENG ; Yan ZHU ; Yan SHI ; Jin-Ping SI ; Dong-Hong CHEN
China Journal of Chinese Materia Medica 2025;50(4):1022-1030
Polygonati Rhizoma demonstrates significant potential for addressing both chronic and hidden hunger. The supply of high-quality seedlings is a primary factor influencing the development of the Polygonati Rhizoma industry. Warm water soaking is often used in agriculture to promote the rapid germination of seeds, while its application and molecular mechanism in Polygonati Rhizoma have not been reported. To rapidly obtain high-quality seedlings, this study treated Polygonatum kingianum var. grandifolium seeds with sand storage at low temperatures, warm water soaking, and cultivation temperature gradients. The results showed that the culture at 25 ℃ or sand storage at 4 ℃ for 2 months rapidly broke the seed dormancy of P. kingianum var. grandifolium, while the culture at 20 ℃ or sand storage at 4 ℃ for 1 month failed to break the seed dormancy. Soaking seeds in 60 ℃ warm water further increased the germination rate, germination potential, and germination index. Specifically, the seeds soaked at 60 ℃ and cultured at 25 ℃ without sand storage treatment(Aa25) achieved a germination rate of 78. 67%±1. 53% on day 42 and 83. 40%±4. 63% on day 77. The seeds pretreated with sand storage at 4 ℃ for 2 months, soaked in 60 ℃ water, and then cultured at 25 ℃ achieved a germination rate comparable to that of Aa25 on day 77. Transcriptomic analysis indicated that warm water soaking might promote germination by triggering reactive oxygen species( ROS), inducing the expression of heat shock factors( HSFs) and heat shock proteins( HSPs), which accelerated DNA replication, transcript maturation, translation, and processing, thereby facilitating the accumulation and turnover of genetic materials. According to the results of indoor controlled experiments and field practices, maintaining a germination and seedling cultivation environment at approximately 25 ℃ was crucial for the one-year seedling cultivation of P. kingianum var. grandifolium.
Germination
;
Seedlings/genetics*
;
Water/metabolism*
;
Seeds/metabolism*
;
Polygonatum/genetics*
;
Temperature
;
Plant Proteins/genetics*
;
Plant Dormancy
3.Genome-wide identification and expression analysis of TCP gene family in Docynia delavayi (Franch.) Schneid.
Baoyue ZHANG ; Guoping LIU ; Jinhong TIAN ; Dawei WANG
Chinese Journal of Biotechnology 2025;41(2):809-824
Docynia delavayi (Franch.) Schneid. is an economic fruit plant with high medicinal and edible values. The TCP gene family plays a vital role in plant growth and development. To explore the function of the TCP gene family in the growth and development of D. delavayi. In this study, the TCP gene family (DdeTCP) members were identified from the D. delavayi genome and their expression levels at different stages of seed germination and fruit development were analyzed. The results showed that a total of 18 DdeTCP genes were identified from the D. delavayi genome, with uneven location on 11 chromosomes. The phylogenetic tree showed that the 18 DdeTCPs could be classified into class Ⅱ (3) and class Ⅱ (15), suggesting that functional differentiation occurred among the DdeTCP family members. DdeTCP11 highly homologous to AtTCP14 was highly expressed in the early stage of seed germination, which suggested that this gene played a key role in seed germination. In addition, DdeTCP16 in class Ⅱ had a high expression level during the fruit ripening stage, which indicated that it might be related to fruit ripening. The findings lay a foundation for probing into the roles of the DdeTCP gene family in the growth and development of D. delavayi.
Phylogeny
;
Gene Expression Regulation, Plant
;
Multigene Family
;
Genome, Plant/genetics*
;
Plant Proteins/genetics*
;
Transcription Factors/genetics*
;
Germination/genetics*
;
Fruit/growth & development*
;
Genes, Plant
4.Expression pattern and transcriptional regulation of CsPIF7 in Camellia sinensis.
Shunhui JIANG ; Huiying JIN ; Na TIAN ; Shuoqian LIU
Chinese Journal of Biotechnology 2025;41(7):2885-2896
The PIF7 gene is a member of the bHLH family, playing a pivotal role in plant germination. However, its roles in tea plants (Camellia sinensis) remain largely unexplored. In this study, we cloned the phytochrome-interacting factor gene CsPIF7 to elucidate its role in the germination of tea plants. Subcellular localization analysis demonstrated that CsPIF7 was localized in the nucleus. Yeast one-hybrid and dual-luciferase reporter assays demonstrated that CsPIF7 directly bound to a specific region (7-321 bp) of the CsEXP promoter, thereby repressing the expression of CsEXP. These findings suggest that CsPIF7 may modulate the germination of tea plants by inhibiting the expression of CsEXP. Quantitative real-time PCR results showed that both CsPIF7 and CsEXP exhibited high expression levels in tea buds, with different expression patterns in response to abscisic acid (ABA) treatment. Furthermore, both CsPIF7 and CsEXP were upregulated under cold stress at 4 ℃, indicating their involvement in the cold response of tea plants. Taken together, these results suggest that CsPIF7 regulates CsEXP expression in an ABA-dependent manner, thereby influencing the germination of tea plants. This study provides both theoretical and experimental insights into the molecular mechanisms governing the germination of tea plants, laying the groundwork for further exploring the role of PIF7 in plant development and stress responses.
Camellia sinensis/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Abscisic Acid/pharmacology*
;
Germination/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/metabolism*
;
Promoter Regions, Genetic
;
Cold Temperature
5.The physiology of plant seed aging: a review.
Peilin HAN ; Yueming LI ; Zihao LIU ; Wanli ZHOU ; Fan YANG ; Jinghong WANG ; Xiufeng YAN ; Jixiang LIN
Chinese Journal of Biotechnology 2022;38(1):77-88
Seed quality plays an important role in the agricultural and animal husbandry production, the effective utilization of genetic resources, the conservation of biodiversity and the restoration and reconstruction of plant communities. Seed aging is a common physiological phenomenon during storage. It is a natural irreversible process that occurs and develops along with the extension of seed storage time. It is not only related to the growth, yield and quality of seed and seedling establishment, but also has an important effect on the conservation, utilization and development of plant germplasm resources. The physiological mechanisms of seed aging are complex and diverse. Most studies focus on conventional physiological characterization, while systematic and comprehensive in-depth studies are lacking. Here we review the recent advances in understanding the physiology of seed aging process, including the methods of seed aging, the effect of aging on seed germination, and the physiological and molecular mechanisms of seed aging. The change of multiple physiological parameters, including seed vigor, electrical conductivity, malondialdehyde content and storage material in the seed, antioxidant enzyme activity and mitochondrial structure, were summarized. Moreover, insights into the mechanism of seed aging from the aspects of transcriptome, proteome and aging related gene function were summarized. This study may facilitate the research of seed biology and the conservation and utilization of germplasm resources.
Germination
;
Plants
;
Proteome
;
Seedlings
;
Seeds/genetics*
6.Comprehensive evaluation of salt-alkali tolerance of rice germplasms at germination and seedling stages and analysis of salt-tolerant genes.
Pingyong SUN ; Wuhan ZHANG ; Fu SHU ; Qiang HE ; Li ZHANG ; Zhuhong YANG ; Zhirong PENG ; Yun XIE ; Huafeng DENG
Chinese Journal of Biotechnology 2022;38(1):252-263
Cultivating salt-alkali tolerant rice varieties is one of the important ways to meet the increasing food demand of growing global population. In this study, twenty-one rice germplasms with different salt-alkali tolerance were treated with six salt-alkali concentrations at germination and seedling stages. The germination potential, germination rate, shoot length, root length, root number, fresh weight of shoot and seedlings were measured. The average value of salt damage rate was used to evaluate the salt-alkali tolerance. As the salt-alkali concentration increases, the inhibition on seed germination and growth became more obvious. Upon treatment with 1% NaCl plus 0.25% NaHCO3, the salt damage rate of germination rate has the largest variation, ranging from 0% to 89.80%. The salt damage rate of each trait shows a similar trend at all concentrations. Four germplasm resources with strong salt-alkali tolerance (Dajiugu, Nippobare, Mowanggu and 02428) and 7 sensitive germplasms were screened. The salt-tolerant gene sequence of 4 salt-alkali tolerant varieties and 3 sensitive germplasms were analyzed. OSHAL3 and OsRR22 were identical among the 7 germplasms, but SKC1 and DST showed clear variations between the salt-alkali tolerant and sensitive germplasms. Besides the salt-alkali tolerant germplasm resources, this study can also serve as a reference for mining of genes involved in salt-alkali tolerance and breeding of salt-alkali tolerant rice varieties.
Alkalies
;
Germination
;
Oryza/genetics*
;
Plant Breeding
;
Seedlings/genetics*
7.Salinity tolerance in barley during germination- homologs and potential genes.
Edward MWANDO ; Tefera Tolera ANGESSA ; Yong HAN ; Chengdao LI
Journal of Zhejiang University. Science. B 2020;21(2):93-121
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Gene Expression Regulation, Plant
;
Genetic Variation
;
Germination/physiology*
;
Hordeum/physiology*
;
Salt Tolerance/genetics*
8.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*
9.Characterization and subcellular localization of two 14-3-3 genes and their response to abiotic stress in wheat.
Xiaodan MENG ; Xin CHEN ; Yaying WANG ; Ruixia XIAO ; Hailun LIU ; Xinguo WANG ; Jiangping REN ; Yongchun LI ; Hongbin NIU ; Xiang WANG ; Jun YIN
Chinese Journal of Biotechnology 2014;30(2):232-246
In order to investigate biological functions of the 14-3-3 genes and their response to abiotic stress, two cDNAs (designated as Ta14R1 and Ta14R2) encoding putative 14-3-3 proteins were isolated from wheat by PCR and rapid amplification of cDNA end (RACE) technique. The cDNA of Ta14R1 is 999bp and encodes a protein of 262 amino acids, while the cDNA of Ta14R2 is 897bp in length and encodes a protein of 261 amino acids. Transient expression assays using Ta14R1/Ta14R2-GFP fusion constructs indicated that Ta14R1 and Ta14R2 were located in cytoplasm and cell membrane but not in chloroplasts. Real-time quantitative (RT-PCR) analysis revealed that Ta14R1 and Ta14R2 were differentially expressed in wheat tissues and significantly up-regulated in roots and shoots 1d after germination, indicating they may play a role in process of seed germination. The expression of the two genes in roots and leaves were significantly induced by plant hormone ABA, as well as heat, cold and drought treatments, suggesting that the two 14-3-3 genes in wheat may be involved in ABA dependent stress-responding pathway and response to heat, cold and drought stress.
14-3-3 Proteins
;
genetics
;
Abscisic Acid
;
pharmacology
;
DNA, Complementary
;
Droughts
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Germination
;
Plant Leaves
;
genetics
;
physiology
;
Plant Roots
;
genetics
;
physiology
;
Stress, Physiological
;
Temperature
;
Triticum
;
genetics
;
physiology
10.Molecular cloning and characterization of S-adenosyl-L-methionine decarboxylase gene (DoSAMDC1) in Dendrobium officinale.
Ming-Ming ZHAO ; Gang ZHANG ; Da-Wei ZHANG ; Shun-Xing GUO
Acta Pharmaceutica Sinica 2013;48(6):946-952
S-Adenosyl-L-methionine decarboxylase (SAMDC) is a key enzyme in the polyamines biosynthesis, thus is essential for basic physiological and biochemical processes in plant. In the present study, a full length cDNA of DoSAMDC1 gene was obtained from symbiotic germinated seeds of an endangered medicinal orchid species Dendrobium officinale, using the rapid amplification of cDNA ends (RACE)-PCR technique for the first time. The full length cDNA was 1 979 bp, with three open reading frames, i.e. tiny-uORF, small-uORF and main ORF (mORF). The mORF was deduced to encode a 368 amino acid (aa) protein with a molecular mass of 40.7 kD and a theoretical isoelectric point of 5.2. The deduced DoSAMDC1 protein, without signal peptide, had two highly conserved function domains (proenzyme cleavage site and PEST domain) and a 22-aa transmembrane domain (89-110). Multiple sequence alignments and phylogenetic relationship analyses revealed DoSAMDC1 had a higher level of sequence similarity to monocot SAMDCs than those of dicot. Expression patterns using qRT-PCR analyses showed that DoSAMDC1 transcripts were expressed constitutively without significant change in the five tissues (not infected with fungi). While in the symbiotic germinated seeds, the expression level was enhanced by 2.74 fold over that in the none-germinated seeds, indicating possible involvement of the gene in symbiotic seed germination of D. officinale.
Adenosylmethionine Decarboxylase
;
genetics
;
isolation & purification
;
Amino Acid Sequence
;
Basidiomycota
;
physiology
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Dendrobium
;
enzymology
;
genetics
;
microbiology
;
Germination
;
Open Reading Frames
;
Phylogeny
;
Plants, Medicinal
;
enzymology
;
genetics
;
microbiology
;
Seeds
;
genetics
;
growth & development
;
microbiology
;
Sequence Alignment
;
Symbiosis
;
physiology

Result Analysis
Print
Save
E-mail