1.Research progress on copy number alterations in pediatric B-cell acute lymphoblastic leukemia.
Chinese Journal of Contemporary Pediatrics 2025;27(6):746-752
Copy number alteration (CNA) is a significant genetic change in pediatric B-cell acute lymphoblastic leukemia (B-ALL), with CDKN2A/B deletions, PAX5 deletions, and IKZF1 deletions being the most common. Recent studies have increasingly highlighted the potential prognostic significance of these gene deletions and multiple co-deletions in pediatric B-ALL. This paper reviews the main detection methods for CNA, as well as the prognostic characteristics and treatment approaches for common CNA in pediatric B-ALL.
Humans
;
DNA Copy Number Variations
;
Child
;
PAX5 Transcription Factor/genetics*
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Cyclin-Dependent Kinase Inhibitor p15/genetics*
;
Ikaros Transcription Factor/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Gene Deletion
;
Cyclin-Dependent Kinase Inhibitor p16/genetics*
;
Prognosis
2.Prognostic Value of CDKN2A Copy Number Deletion in Patients with Diffuse Large B-Cell Lymphoma.
Wei-Yuan MA ; Le-Tian SHAO ; Wen-Xin TIAN ; Sha LIU ; Yan LI
Journal of Experimental Hematology 2025;33(2):379-386
OBJECTIVE:
To investigate the relationship between CDKN2A copy number deletion and clinical features of patients with diffuse large B-cell lymphoma (DLBCL) and its prognostic value.
METHODS:
155 newly diagnosed DLBCL patients with complete clinical data in the Department of Hematology of People's Hospital of Xinjiang Uygur Autonomous Region from March 2009 to March 2022 were included, formalin-fixed paraffin-embedded tumor tissues were obtained and DNA was extracted from them, and next-generation sequencing technology was applied to target sequencing including 475 lymphoma-related genes, the relationship between CDKN2A copy number deletion and clinical features, high-frequency mutated genes and overall survival (OS) of DLBCL patients were analyzed.
RESULTS:
CDKN2A copy number deletion was present in 12.9% (20/155) of 155 DLBCL patients, grouped according to the presence or absence of copy number deletion of CDKN2A, and a higher proportion of patients with IPI≥3 were found in the CDKN2A copy number deletion group compared to the group with no CDKN2A copy number deletion (80% vs 51.5%, P =0.015) and were more likely to have bulky disease (20% vs 5.2%, P =0.037). Survival analysis showed that the 5-year OS of patients in the CDKN2A copy number deletion group was significantly lower than that of the non-deletion group (51.3% vs 69.2%, P =0.047). Multivariate Cox analysis showed that IPI score≥3 (P =0.007), TP53 mutation (P =0.009), and CDKN2A copy number deletion (P =0.04) were independent risk factors affecting the OS of DLBCL patients.
CONCLUSION
CDKN2A copy number deletion is an independent risk factor for OS in DLBCL, and accurate identification of CDKN2A copy number deletion can predict the prognosis of DLBCL patients.
Humans
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Prognosis
;
Cyclin-Dependent Kinase Inhibitor p16/genetics*
;
DNA Copy Number Variations
;
Female
;
Male
;
Middle Aged
;
Gene Deletion
;
Adult
;
Aged
3.Peripheral blood mitochondrial DNA copy number as a predictor of steatotic liver disease development: insights from epidemiological and experimental studies.
Genki MIZUNO ; Atsushi TESHIGAWARA ; Hiroya YAMADA ; Eiji MUNETSUNA ; Yoshiki TSUBOI ; Yuji HATTORI ; Mirai YAMAZAKI ; Yoshitaka ANDO ; Itsuki KAGEYAMA ; Takuya WAKASUGI ; Naohiro ICHINO ; Keisuke OSAKABE ; Keiko SUGIMOTO ; Ryosuke FUJII ; Hiroaki ISHIKAWA ; Nobutaka OHGAMI ; Koji OHASHI ; Koji SUZUKI
Environmental Health and Preventive Medicine 2025;30():42-42
BACKGROUND:
Mitochondria, which harbor their own genome (mtDNA), have attracted attention due to the potential of mtDNA copy number (mtDNA-CN) as an indicator of mitochondrial dysfunction. Although mtDNA-CN has been proposed as a simple and accessible biomarker for metabolic disorders such as metabolic dysfunction-associated steatotic liver disease, the underlying mechanisms and the causal relationship remain insufficiently elucidated. In this investigation, we combined longitudinal epidemiological data, animal studies, and in vitro assays to elucidate the potential causal relationship between reduced mtDNA-CN and the development of steatotic liver disease (SLD).
METHODS:
We conducted a longitudinal study using data from a health examination cohort initiated in 1981 in Yakumo, Hokkaido, Japan. Data from examinations performed in 2015 and 2022 were analyzed, focusing on 76 subjects without SLD at baseline (2015) to assess the association between baseline mtDNA-CN and subsequent risk of SLD development. In addition, 28-day-old SD rats were fed ad libitum on a 45% high-fat diet and dissected at 2 and 8 weeks of age. Blood and liver mtDNA-CN were measured and compared at each feeding period. Additionally, in vitro experiments were performed using HepG2 cells treated with mitochondrial function inhibitors to induce mtDNA-CN depletion and to examine its impact on intracellular lipid accumulation.
RESULTS:
Epidemiological analysis showed that the subjects with low mtDNA-CN had a significantly higher odds ratio for developing SLD compared to high (odds ratio [95% confidence interval]: 4.93 [1.08-22.50]). Analysis of the animal model showed that 8 weeks of high-fat diet led to the development of fatty liver and a significant decrease in mtDNA-CN. A further 2 weeks of high-fat diet consumption resulted in a significant decrease in hepatic mtDNA-CN, despite the absence of fatty liver development, and a similar trend was observed for blood. Complementary in vitro experiments revealed that pharmacologically induced mitochondrial dysfunction led to a significant reduction in mtDNA-CN and was associated with increases in intracellular lipid accumulation in HepG2 cells.
CONCLUSIONS
Our findings suggest that reduced mtDNA-CN may contribute causally to SLD development and could serve as a convenient, noninvasive biomarker for early detection and risk assessment.
Animals
;
DNA, Mitochondrial/genetics*
;
Humans
;
Male
;
DNA Copy Number Variations
;
Female
;
Fatty Liver/blood*
;
Rats
;
Middle Aged
;
Longitudinal Studies
;
Rats, Sprague-Dawley
;
Adult
;
Japan/epidemiology*
;
Aged
;
Biomarkers/blood*
;
Hep G2 Cells
;
Diet, High-Fat/adverse effects*
4.Deciphering odontogenic myxoma: the role of copy number variations as diagnostic signatures.
Aobo ZHANG ; Jianyun ZHANG ; Xuefen LI ; Xia ZHOU ; Yanrui FENG ; Lijing ZHU ; Heyu ZHANG ; Lisha SUN ; Tiejun LI
Journal of Zhejiang University. Science. B 2024;25(12):1071-1082
In light of the lack of reliable molecular markers for odontogenic myxoma (OM), the detection of copy number variation (CNV) may present a more objective method for assessing ambiguous cases. In this study, we employed multiregional microdissection sequencing to integrate morphological features with genomic profiling. This allowed us to reveal the CNV profiles of OM and compare them with dental papilla (DP), dental follicle (DF), and odontogenic fibroma (OF) tissues. We identified a distinct and robustly consistent CNV pattern in 93.75% (30/32) of OM cases, characterized by CNV gain events in chromosomes 4, 5, 8, 10, 12, 16, 17, 20, and 21. This pattern significantly differed from the CNV patterns observed in DP, DF, and OF. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated potential links between this CNV patterns and the calcium signaling pathway and salivary secretion, while Gene Ontology (GO) term analysis implicated CNV patterns in tumor adhesion, tooth development, and cell proliferation. Comprehensive CNV analysis accurately identified a case that was initially disputable between OF and OM as OM. Our findings provide a reliable diagnostic clue and fresh insights into the molecular biological mechanism underlying OM.
Humans
;
DNA Copy Number Variations
;
Odontogenic Tumors/diagnosis*
;
Myxoma/genetics*
;
Female
;
Male
;
Adult
;
Adolescent
;
Middle Aged
;
Dental Papilla
;
Young Adult
;
Fibroma/genetics*
;
Dental Sac
;
Child
5.Analysis of genotypes on 850 newborns with SLC26A4 single-allele mutation and the phenotypes of those with second variant.
Li Hui HUANG ; Xue Lei ZHAO ; Xiao Hua CHENG ; Yi Ding YU ; Cheng WEN ; Yue LI ; Xian Lei WANG ; Xue Yuao WANG ; Yu RUAN ; Hui EN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(2):117-125
Objective: To clarify the phenotypes of the newborns with SLC26A4 single-allele mutation in deafness genetic screening and second variant; to analyze the SLC26A4 genotype and hearing phenotype. Methods: 850 newborns born in Beijing from April 2015 to December 2019 were included and there were 468 males and 382 females. They received genetic deafness screening for 9 or 15 variants, with the result of SLC26A4 single-allele mutation. Firstly, three step deafness gene sequencing was adopted in this work, i.e., the first step was "SLC26A4 gene whole exons and splice sites" sequencing; the second step was "SLC26A4 gene promoter, FOXI1 gene and KCNJ10 gene whole exons" sequencing; and the third step was detection for "SLC26A4 gene copy number variation". Secondly, we collected the results of newborn hearing screening for all patients with the second mutation found in the three step test, and conducted audiological examinations, such as acoustic immittance, auditory brainstem response and auditory steady state response. Thirdly, for novel/VUS mutations, we searched the international deafness gene database or software, such as DVD, ClinVar and Mutation Taster, to predict the pathogenicity of mutations according to the ACMG guideline. Lastly, we analyzed the relationship between genotype and phenotype of newborns with SLC26A4 single allele mutation. Results: Among 850 cases, the median age of diagnosis was 4 months. In the first step, 850 cases were sequenced. A total of 32 cases (3.76%, 32/850) of a second variants were detected, including 18 cases (2.12%, 18/850) with identified pathogenic variants; 832 cases were sequenced and 8 cases of KCNJ10 gene missense variants were detected among the second step. No missense mutations in the FOXI1 gene and abnormal SLC26A4 gene promoter were detected; the third step sequencing results were all negative. Genotypes and hearing phenotypes included 18 cases combined with the second clear pathogenic variant, 16 cases (16/18) referred newborn hearing screening and 2 cases (2/18) passed in both ears; degree of hearing loss consisted of 18 profound ears (18/36), 13 severe ears (13/36) and 5 moderate ears (5/36); audiogram patterns comprised 17 high frequency drop ears (17/36), 14 flat ears (14/36), 3 undistinguished ears (3/36), and 2 U shaped ears (2/36); 11 cases underwent imaging examination, all of which were bilateral enlarged vestibular aqueduct. As for 22 cases of other genotypes, all passed neonatal hearing screening and the hearing diagnosis was normal, including 9 cases with VUS or possibly novel benign variants, 8 cases with KCNJ10 double gene heterozygous variants, and 5 cases with double heterozygous variants. Conclusions: The probability of individuals with SLC26A4 single-allele variant who merge with a second pathogenic variant is 2.12%, all of which are SNV, which can provide scientific basis for the genetic diagnosis and genetic counseling of SLC26A4 variants. Those who have merged with second pathogenic variant are all diagnosed with sensorineural hearing loss. Patients with KCNJ10 gene mutations do not manifest hearing loss during the infancy, suggesting the need for further follow-up.
Female
;
Humans
;
Male
;
Alleles
;
Deafness/genetics*
;
DNA Copy Number Variations
;
Forkhead Transcription Factors/genetics*
;
Genotype
;
Hearing Loss/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Phenotype
;
Sulfate Transporters/genetics*
;
Vestibular Aqueduct
;
Infant, Newborn
;
Potassium Channels, Inwardly Rectifying/genetics*
6.Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas.
Fangyu WANG ; Xuan LIU ; Shaowen LI ; Chen ZHAO ; Yumei SUN ; Kuan TIAN ; Junbao WANG ; Wei LI ; Lichao XU ; Jing JING ; Juan WANG ; Sylvia M EVANS ; Zhiqiang LI ; Ying LIU ; Yan ZHOU
Protein & Cell 2023;14(2):105-122
Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Mice
;
Animals
;
Humans
;
Glioblastoma/pathology*
;
Endothelial Cells/pathology*
;
DNA Copy Number Variations
;
Brain/metabolism*
;
Brain Neoplasms/pathology*
7.Identification of de novo Mutations in the Chinese Autism Spectrum Disorder Cohort via Whole-Exome Sequencing Unveils Brain Regions Implicated in Autism.
Bo YUAN ; Mengdi WANG ; Xinran WU ; Peipei CHENG ; Ran ZHANG ; Ran ZHANG ; Shunying YU ; Jie ZHANG ; Yasong DU ; Xiaoqun WANG ; Zilong QIU
Neuroscience Bulletin 2023;39(10):1469-1480
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and repetitive behaviors. Although hundreds of ASD risk genes, implicated in synaptic formation and transcriptional regulation, have been identified through human genetic studies, the East Asian ASD cohorts are still under-represented in genome-wide genetic studies. Here, we applied whole-exome sequencing to 369 ASD trios including probands and unaffected parents of Chinese origin. Using a joint-calling analytical pipeline based on GATK toolkits, we identified numerous de novo mutations including 55 high-impact variants and 165 moderate-impact variants, as well as de novo copy number variations containing known ASD-related genes. Importantly, combined with single-cell sequencing data from the developing human brain, we found that the expression of genes with de novo mutations was specifically enriched in the pre-, post-central gyrus (PRC, PC) and banks of the superior temporal (BST) regions in the human brain. By further analyzing the brain imaging data with ASD and healthy controls, we found that the gray volume of the right BST in ASD patients was significantly decreased compared to healthy controls, suggesting the potential structural deficits associated with ASD. Finally, we found a decrease in the seed-based functional connectivity between BST/PC/PRC and sensory areas, the insula, as well as the frontal lobes in ASD patients. This work indicated that combinatorial analysis with genome-wide screening, single-cell sequencing, and brain imaging data reveal the brain regions contributing to the etiology of ASD.
Humans
;
Autism Spectrum Disorder/metabolism*
;
Autistic Disorder
;
Exome Sequencing
;
DNA Copy Number Variations
;
East Asian People
;
Brain/metabolism*
;
Mutation/genetics*
;
Genetic Predisposition to Disease/genetics*
8.Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients.
Xianggui YUAN ; Teng YU ; Jianzhi ZHAO ; Huawei JIANG ; Yuanyuan HAO ; Wen LEI ; Yun LIANG ; Baizhou LI ; Wenbin QIAN
Frontiers of Medicine 2023;17(5):889-906
Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.
Humans
;
DNA Copy Number Variations
;
Nuclear Proteins/genetics*
;
Central Nervous System Neoplasms/pathology*
;
Transcription Factors/genetics*
;
Prognosis
;
Lymphoma/genetics*
;
Genomics
;
China
;
Central Nervous System/pathology*
;
Bromodomain Containing Proteins
;
Cell Cycle Proteins/genetics*
9.Report content and prenatal diagnosis of non-invasive prenatal testing for sex chromosome aneuploidy.
Chun Xiang ZHOU ; Lin Lin HE ; Xiang Yu ZHU ; Zhao Xia LI ; Hong Lei DUAN ; Wei LIU ; Lei Lei GU ; Jie LI
Chinese Journal of Obstetrics and Gynecology 2023;58(10):766-773
Objective: To analyze the report content, the methods and results of prenatal diagnosis of high risk of sex chromosome aneuploidy (SCA) in non-invasive prenatal testing (NIPT). Methods: A total of 227 single pregnancy pregnant women who received genetic counseling and invasive prenatal diagnosis at Drum Tower Hospital Affiliated to the Medical School of Nanjing University from January 2015 to April 2022 due to the high risk of SCA suggested by NIPT were collected. The methods and results of prenatal diagnosis were retrospectively analyzed, and the results of chromosome karyotype analysis and chromosome microarray analysis (CMA) were compared. The relationship between NIPT screening and invasive prenatal diagnosis was analyzed. Results: (1) Prenatal diagnosis methods for 277 SCA high risk pregnant women included 73 cases of karyotyping, 41 cases of CMA and 163 cases of karyotyping combined with CMA, of which one case conducted amniocentesis secondly for further fluorescence in situ hybridization (FISH) testing. Results of invasive prenatal diagnosis were normal in 166 cases (59.9%, 166/277), and the abnormal results including one case of 45,X (0.4%, 1/277), 18 cases of 47,XXX (6.5%, 18/277), 36 cases of 47,XXY (13.0%, 36/277), 20 cases of 47,XYY (7.2%, 20/277), 1 case of 48,XXXX (0.4%, 1/277), 20 cases of mosaic SCA (7.2%, 20/277), 5 cases of sex chromosome structural abnormality or large segment abnormality (1.8%, 5/277), and 10 cases of other abnormalities [3.6%, 10/277; including 9 cases of copy number variation (CNV) and 1 case of balanced translocation]. Positive predictive value (PPV) for SCA screening by NIPT was 34.7% (96/277). (2) Among the 163 cases tested by karyotyping combined with CMA, 11 cases (6.7%, 11/163) showed inconsistent results by both methods, including 5 cases of mosaic SCA, 1 case of additional balanced translocation detected by karyotyping and 5 cases of additional CNV detected by CMA. (3) NIPT screening reports included 149 cases of "sex chromosome aneuploidy"(53.8%, 149/277), 54 cases of "number of sex chromosome increased" (19.5%, 54/277), and 74 cases of "number of sex chromosome or X chromosome decreased" (26.7%, 74/277). The PPV of "number of sex chromosome increased" and "number of sex chromosome or X chromosome decreased" were 72.2% (39/54) and 18.9% (14/74), respectively, and the difference was statistically significant (χ2=34.56, P<0.01). Conclusions: NIPT could be served as an important prenatal screening technique of SCA, especially for trisomy and mosaicism, but the PPV is comparatively low. More information of NIPT such as the specific SCA or maternal SCA might help improving the confidence of genetic counseling and thus guide clinic management. Multi technology platforms including karyotyping, CMA and FISH could be considered in the diagnosis of high risk of SCA by NIPT.
Female
;
Pregnancy
;
Humans
;
Retrospective Studies
;
DNA Copy Number Variations
;
In Situ Hybridization, Fluorescence
;
Aneuploidy
;
Prenatal Diagnosis/methods*
;
Sex Chromosome Aberrations
;
Sex Chromosomes/genetics*
10.Multiomics and Multidimensional Testing for Efficacy Monitoring of Patients with Lymphoma.
Xin-Hua WANG ; Yan-Xin YANG ; Ying-Jun WANG ; Bao-Hong YUE ; Ming-Zhi ZHANG
Journal of Experimental Hematology 2023;31(3):746-752
OBJECTIVE:
To explore the role of a new blood-based, multiomics and multidimensional method for evaluating the efficacy of patients with lymphoma.
METHODS:
10 ml peripheral blood was extracted from each patient, and the genomic copy number aberrations (CNA) and fragment size (FS) were evaluated by low-depth whole genome sequencing of cfDNA, and the level of a group of plasma tumor marker (PTM) were detected at the same time. The cancer efficacy score (CES) was obtained by standardized transformation of the value of above three numerical indexes, and the changes of CES before and after treatment were compared to evaluate the patient's response to the treatment regimen.
RESULTS:
A total of 35 patients' baseline data were collected, of which 23 cases (65.7%) had elevated CES values. 18 patients underwent the first time test. The results showed that the CES value of 9 patients with positive baseline CES decreased significantly at the first test, and the efficacy evaluation was PR, which was highly consistent with the imaging evaluation results of the same period. At the same time, the CNA variation spectrum of all patients were evaluated and it was found that 23 patients had partial amplification or deletion of chromosome fragments. The most common amplification site was 8q24.21, which contains important oncogenes such as MYC. The most common deletion sites were 1p36.32, 4q21.23, 6q21, 6q27, 14q32.33, and tumor suppressor-related genes such as PRDM1, ATG5, AIM1, FOXO3 and HACE1 were expressed in the above regions, so these deletions may be related to the occurrence and development of lymphoma.
CONCLUSION
With the advantages of more convenience, sensitivity and non-invasive, this multiomics and multidimensional efficacy detection method can evaluate the tumor load of patients with lymphoma at the molecular level, and make more accurate efficacy evaluation, which is expected to serve the clinic better.
Humans
;
Multiomics
;
Lymphoma/genetics*
;
Cell-Free Nucleic Acids
;
Genomics/methods*
;
DNA Copy Number Variations
;
Ubiquitin-Protein Ligases

Result Analysis
Print
Save
E-mail