1.Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae.
Shi-Jian ZHANG ; Lei LIU ; Ruolin YANG ; Xiangfeng WANG
Genomics, Proteomics & Bioinformatics 2020;18(3):321-332
The dynamic activity of transposable elements (TEs) contributes to the vast diversity of genome size and architecture among plants. Here, we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons (LTR-RTs) in Arabidopsis thaliana (Ath) and three of its relatives, Arabidopsis lyrata (Aly), Eutrema salsugineum (Esa), and Schrenkiella parvula (Spa), in Brassicaceae. Our analyses revealed the distinct evolutionary dynamics of Gypsyretrotransposons, which reflects the different patterns of genome size changes of the four species over the past million years. The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa, suggesting an expanding Aly genome. Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion. In contrast, Gypsy insertions in Spa have been largely suppressed over the last million years, likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements. Additionally, species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.
Brassicaceae/genetics*
;
Evolution, Molecular
;
Genome Size
;
Genome, Plant
;
Genomics
;
Phylogeny
;
Retroelements
;
Species Specificity
2.Association of circulating 25-hydroxyvitamin D levels with hypertension and blood pressure values in Korean adults: A Mendelian randomization study on a subset of the Korea National Health and Nutrition Survey 2011–2012 population
So Young KWAK ; Yoonsu CHO ; Hannah OH ; Min Jeong SHIN
Nutrition Research and Practice 2019;13(6):498-508
BACKGROUND/OBJECTIVES: Lower circulating 25-hydroxyvitamin D [25(OH)D] levels are associated with a higher risk of hypertension (HTN); however, it remains unclear whether the relationship is causal. We aimed to evaluate the causal effects of circulating 25(OH)D levels on the prevalence of HTN in the Korean population using the Mendelian randomization (MR) approach. SUBJECTS/METHODS: Epidemiological data, serum 25(OH)D data, and genomic DNA biospecimens were obtained from 2,591 participants, a subset of the study population in the Korea National Health and Nutrition Survey 2011-2012. Five 25(OH)D-related single nucleotide polymorphisms (SNPs; DHCR7 rs12785878, CYP2R1 rs10741657, CYP2R1 rs12794714, CYP24A1 rs6013897, and GC rs2282679), identified a priori from genome-wide association studies, were used as instrument variables (IVs) for serum 25(OH)D levels. In the MR analysis, we performed IV analyses using the two-stage least squares method. RESULTS: In the observational analysis, circulating 25(OH)D levels were found to be inversely associated with the HTN prevalence in ordinary least squares models (odds ratio: 0.97, 95% confidence interval: 0.96, 0.99) after adjusting for the potential confounders. There were differences in the circulating 25(OH)D levels across genotypes of individual SNPs. In the MR analysis, using individual SNPs as IVs, 25(OH)D levels were not associated with the HTN prevalence. CONCLUSIONS: We found no association between genetically determined circulating 25(OH)D levels and HTN in Korean adults. Our results are listed owing to the relatively small sample size and possible weak instrument bias; therefore, further studies are needed to confirm these results.
Adult
;
Bias (Epidemiology)
;
Blood Pressure
;
DNA
;
Genome-Wide Association Study
;
Genotype
;
Humans
;
Hypertension
;
Korea
;
Least-Squares Analysis
;
Methods
;
Nutrition Surveys
;
Polymorphism, Single Nucleotide
;
Prevalence
;
Random Allocation
;
Sample Size
;
Vitamin D
;
Vitamin D3 24-Hydroxylase
3.Rapid Whole-genome Sequencing of Zika Viruses using Direct RNA Sequencing
Jung Heon KIM ; Jiyeon KIM ; Bon Sang KOO ; Hanseul OH ; Jung Joo HONG ; Eung Soo HWANG
Journal of Bacteriology and Virology 2019;49(3):115-123
Zika virus (ZIKV) is one of the pathogens which is transmitted world widely, but there are no effective drugs and vaccines. Whole genome sequencing (WGS) of viruses could be applied to viral pathogen characterization, diagnosis, molecular surveillance, and even finding novel pathogens. We established an improved method using direct RNA sequencing with Nanopore technology to obtain WGS of ZIKV, after adding poly (A) tails to viral RNA. This established method does not require specific primers, complimentary DNA (cDNA) synthesis, and polymerase chain reaction (PCR)-based enrichment, resulting in the reduction of biases as well as of the ability to find novel RNA viruses. Nanopore technology also allows to read long sequences. It makes WGS easier and faster with long-read assembly. In this study, we obtained WGS of two strains of ZIKV following the established protocol. The sequenced reads resulted in 99% and 100% genome coverage with 63.5X and 21,136X, for the ZIKV PRVABC59 and MR 766 strains, respectively. The sequence identities of the ZIKV PRVABC59 and MR 766 strains for each reference genomes were 98.76% and 99.72%, respectively. We also found that the maximum length of reads was 10,311 bp which is almost the whole genome size of ZIKV. These long-reads could make overall structure of whole genome easily, and WGS faster and easier. The protocol in this study could provide rapid and efficient WGS that could be applied to study the biology of RNA viruses including identification, characterization, and global surveillance.
Bias (Epidemiology)
;
Biology
;
Diagnosis
;
DNA
;
Genome
;
Genome Size
;
Methods
;
Nanopores
;
Polymerase Chain Reaction
;
RNA Viruses
;
RNA
;
RNA, Viral
;
Sequence Analysis, RNA
;
Tail
;
Vaccines
;
Zika Virus
4.Genome-Wide Analysis Reveals Four Novel Loci for Attention-Deficit Hyperactivity Disorder in Korean Youths.
Kukju KWEON ; Eun Soon SHIN ; Kee Jeong PARK ; Jong Keuk LEE ; Yeonho JOO ; Hyo Won KIM
Journal of the Korean Academy of Child and Adolescent Psychiatry 2018;29(2):62-72
OBJECTIVES: The molecular mechanisms underlying attention-deficit hyperactivity disorder (ADHD) remain unclear. Therefore, this study aimed to identify the genetic susceptibility loci for ADHD in Korean children with ADHD. We performed a case-control and a family-based genome-wide association study (GWAS), as well as genome-wide quantitative trait locus (QTL) analyses, for two symptom traits. METHODS: A total of 135 subjects (71 cases and 64 controls), for the case-control analysis, and 54 subjects (27 probands and 27 unaffected siblings), for the family-based analysis, were included. RESULTS: The genome-wide QTL analysis identified four single nucleotide polymorphisms (SNPs) (rs7684645 near APELA, rs12538843 near YAE1D1 and POU6F2, rs11074258 near MCTP2, and rs34396552 near CIDEA) that were significantly associated with the number of inattention symptoms in ADHD. These SNPs showed possible association with ADHD in the family-based GWAS, and with hyperactivity-impulsivity in genome-wide QTL analyses. Moreover, association signals in the family-based QTL analysis for the number of inattention symptoms were clustered near genes IL10, IL19, SCL5A9, and SKINTL. CONCLUSION: We have identified four QTLs with genome-wide significance and several promising candidates that could potentially be associated with ADHD (CXCR4, UPF1, SETD5, NALCN-AS1, ERC1, SOX2-OT, FGFR2, ANO4, and TBL1XR1). Further replication studies with larger sample sizes are needed.
Adolescent*
;
Case-Control Studies
;
Child
;
Genetic Predisposition to Disease
;
Genome-Wide Association Study
;
Humans
;
Interleukin-10
;
Polymorphism, Single Nucleotide
;
Quantitative Trait Loci
;
Sample Size
5.DNA Methylation and Birth Weight: a Genome-wide Analysis.
Li Li MAO ; Xin Hua XIAO ; Qian ZHANG ; Jia ZHENG ; Wen Hui LI ; Miao YU ; Hua Bing ZHANG ; Fan PING ; Jian Ping XU ; Xiao Jing WANG
Biomedical and Environmental Sciences 2017;30(9):667-670
The study illustrate the inner correlation between global DNA methylation variation and different birth weights. Infant birth weight was used to identify cases and controls. Cord blood and placentas were collected. We performed DNA methylation profiling of bisulphite-converted DNA. We have identified many differentially methylated CpG sites in experimental groups; these sites involved in hundreds of signalings. Among these, more than ten pathways were referred to the glucose and lipid metabolism. Methylation changes in the insulin-signaling pathway (ISP), adipocytokine signaling pathway (ASP) and MAPK signaling pathway are involved in the fetal programming of diabetes..
Birth Weight
;
DNA Methylation
;
Female
;
Gene Expression Regulation, Developmental
;
physiology
;
Genome-Wide Association Study
;
Humans
;
Infant, Newborn
;
Male
;
Organ Size
;
Placenta
;
anatomy & histology
;
Pregnancy
;
Signal Transduction
6.RNA-Seq for Gene Expression Profiling of Human Necrotizing Enterocolitis: a Pilot Study.
Kyuwhan JUNG ; InSong KOH ; Jeong Hyun KIM ; Hyun Sub CHEONG ; Taejin PARK ; So Hyun NAM ; Soo Min JUNG ; Cherry Ann SIO ; Su Yeong KIM ; Euiseok JUNG ; Byoungkook LEE ; Hye Rim KIM ; Eun SHIN ; Sung Eun JUNG ; Chang Won CHOI ; Beyong Il KIM ; Eunyoung JUNG ; Hyoung Doo SHIN
Journal of Korean Medical Science 2017;32(5):817-824
Necrotizing enterocolitis (NEC) characterized by inflammatory intestinal necrosis is a major cause of mortality and morbidity in newborns. Deep RNA sequencing (RNA-Seq) has recently emerged as a powerful technology enabling better quantification of gene expression than microarrays with a lower background signal. A total of 10 transcriptomes from 5 pairs of NEC lesions and adjacent normal tissues obtained from preterm infants with NEC were analyzed. As a result, a total of 65 genes (57 down-regulated and 8 up-regulated) revealed significantly different expression levels in the NEC lesion compared to the adjacent normal region, based on a significance at fold change ≥ 1.5 and P ≤ 0.05. The most significant gene, DPF3 (P < 0.001), has recently been reported to have differential expressions in colon segments. Our gene ontology analysis between NEC lesion and adjacent normal tissues showed that down-regulated genes were included in nervous system development with the most significance (P = 9.3 × 10⁻⁷; P(corr) = 0.0003). In further pathway analysis using Pathway Express based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, genes involved in thyroid cancer and axon guidance were predicted to be associated with different expression (P(corr) = 0.008 and 0.020, respectively). Although further replications using a larger sample size and functional evaluations are needed, our results suggest that altered gene expression and the genes' involved functional pathways and categories may provide insight into NEC development and aid in future research.
Axons
;
Colon
;
Enterocolitis, Necrotizing*
;
Gene Expression Profiling*
;
Gene Expression*
;
Gene Ontology
;
Genome
;
Humans*
;
Infant, Newborn
;
Infant, Premature
;
Mortality
;
Necrosis
;
Nervous System
;
Pilot Projects*
;
Sample Size
;
Sequence Analysis, RNA
;
Thyroid Neoplasms
;
Transcriptome
7.Recapitulation of Candidate Systemic Lupus Erythematosus-Associated Variants in Koreans.
Ki Sung KWON ; Hye Young CHO ; Yeun Jun CHUNG
Genomics & Informatics 2016;14(3):85-89
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organ systems. Although the etiology of SLE remains unclear, it is widely accepted that genetic factors could be involved in its pathogenesis. A number of genome-wide association studies (GWASs) have identified novel single-nucleotide polymorphisms (SNPs) associated with the risk of SLE in diverse populations. However, not all the SNP candidates identified from non-Asian populations have been validated in Koreans. In this study, we aimed to replicate the SNPs that were recently discovered in the GWAS; these SNPs have not been validated in Koreans or have only been replicated in Koreans with an insufficient sample size to conclude any association. For this, we selected five SNPs (rs1801274 in FCGR2A and rs2286672 in PLD2, rs887369 in CXorf21, rs9782955 in LYST, and rs3794060 in NADSYN1). Through the replication study with 656 cases and 622 controls, rs1801274 in FCGR2A was found to be significantly associated with SLE in Koreans (odds ratio, 1.26, 95% confidence interval, 1.06 to 1.50; p = 0.01 in allelic model). This association was also significant in two other models (dominant and recessive). The other four SNPs did not show a significant association. Our data support that FCGR polymorphisms play important roles in the susceptibility to SLE in diverse populations, including Koreans.
Autoimmune Diseases
;
Genome-Wide Association Study
;
Lupus Erythematosus, Systemic
;
Polymorphism, Single Nucleotide
;
Sample Size
8.Planarians: an In Vivo Model for Regenerative Medicine.
Ali KARAMI ; Hamid TEBYANIAN ; Vahabodin GOODARZI ; Sajad SHIRI
International Journal of Stem Cells 2015;8(2):128-133
The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8x108 base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population.
Animals
;
Base Pairing
;
Cell Proliferation
;
Diploidy
;
Fresh Water
;
Genome Size
;
Head
;
Hope
;
Humans
;
Muscle Cells
;
Pharynx
;
Planarians*
;
Regeneration
;
Regenerative Medicine*
;
Stem Cells
9.Genetic Studies on Diabetic Microvascular Complications: Focusing on Genome-Wide Association Studies.
Soo Heon KWAK ; Kyong Soo PARK
Endocrinology and Metabolism 2015;30(2):147-158
Diabetes is a common metabolic disorder with a worldwide prevalence of 8.3% and is the leading cause of visual loss, end-stage renal disease and amputation. Recently, genome-wide association studies (GWASs) have identified genetic risk factors for diabetic microvascular complications of retinopathy, nephropathy, and neuropathy. We summarized the recent findings of GWASs on diabetic microvascular complications and highlighted the challenges and our opinion on future directives. Five GWASs were conducted on diabetic retinopathy, nine on nephropathy, and one on neuropathic pain. The majority of recent GWASs were underpowered and heterogeneous in terms of study design, inclusion criteria and phenotype definition. Therefore, few reached the genome-wide significance threshold and the findings were inconsistent across the studies. Recent GWASs provided novel information on genetic risk factors and the possible pathophysiology of diabetic microvascular complications. However, further collaborative efforts to standardize phenotype definition and increase sample size are necessary for successful genetic studies on diabetic microvascular complications.
Amputation
;
Diabetic Retinopathy
;
Genetics
;
Genome-Wide Association Study*
;
Kidney Failure, Chronic
;
Neuralgia
;
Phenotype
;
Prevalence
;
Risk Factors
;
Sample Size
10.Genome Size Constraint in Replication and Packaging of Turnip Yellow Mosaic Virus.
Hui Bae KIM ; Kwang Hee CHAE ; Tae Ju CHO
Journal of Bacteriology and Virology 2014;44(2):188-196
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA as a genome. Previously, we have made the recombinant TYMV construct containing a 0.7 kb eGFP gene or a 1.8 kb GUS gene. The genomic RNAs from these constructs were efficiently encapsidated. To examine in more detail whether size constraint exists for replication and packaging of TYMV, we have inserted into the TY-GUS an extra sequence derived from either eGFP or GUS. We also made a recombinant containing RNA1 sequence of Flock house virus. These TYMV recombinants were introduced into Nicotiana benthamiana leaves by agroinfiltration. Northern blot analysis of the viral RNAs in the agroinfiltrated leaves showed that the genomic RNA band from the recombinant TYMV became weaker as longer sequence was inserted. The result also showed that the efficiency of genomic RNA encapsidation decreased sharply when an extra sequence of 2.2 kb or more was inserted. In contrast, the recombinant subgenomic RNA containing an extra sequence of up to 3.2 kb was efficiently encapsidated. Overall, these results show that size constraint exists for replication and encapsidation of TYMV RNA.
Blotting, Northern
;
Genome
;
Genome Size*
;
Plant Viruses
;
Product Packaging*
;
RNA
;
RNA, Viral
;
Tobacco
;
Tymovirus*

Result Analysis
Print
Save
E-mail