1.Laboratory Diagnosis and Molecular Epidemiological Characterization of the First Imported Case of Lassa Fever in China.
Yu Liang FENG ; Wei LI ; Ming Feng JIANG ; Hong Rong ZHONG ; Wei WU ; Lyu Bo TIAN ; Guo CHEN ; Zhen Hua CHEN ; Can LUO ; Rong Mei YUAN ; Xing Yu ZHOU ; Jian Dong LI ; Xiao Rong YANG ; Ming PAN
Biomedical and Environmental Sciences 2025;38(3):279-289
OBJECTIVE:
This study reports the first imported case of Lassa fever (LF) in China. Laboratory detection and molecular epidemiological analysis of the Lassa virus (LASV) from this case offer valuable insights for the prevention and control of LF.
METHODS:
Samples of cerebrospinal fluid (CSF), blood, urine, saliva, and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection. Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.
RESULTS:
LASV was detected in the patient's CSF, blood, and urine, while all samples from close contacts and the environment tested negative. The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone. The variability in the glycoprotein complex (GPC) among different strains ranged from 3.9% to 15.1%, higher than previously reported for the seven known lineages. Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes, increasing strain diversity and potentially impacting immune response.
CONCLUSION
The case was confirmed through nucleotide detection, with no evidence of secondary transmission or viral spread. The LASV strain identified belongs to lineage IV, with broader GPC variability than previously reported. Mutations in the immune-related sites of GPC may affect immune responses, necessitating heightened vigilance regarding the virus.
Humans
;
China/epidemiology*
;
Genome, Viral
;
Lassa Fever/virology*
;
Lassa virus/classification*
;
Molecular Epidemiology
;
Phylogeny
2.(Meta)transcriptomic Insights into the Role of Ticks in Poxvirus Evolution and Transmission: A Multicontinental Analysis.
Yu Xi WANG ; Jing Jing HU ; Jing Jing HOU ; Xiao Jie YUAN ; Wei Jie CHEN ; Yan Jiao LI ; Qi le GAO ; Yue PAN ; Shui Ping LU ; Qi CHEN ; Si Ru HU ; Zhong Jun SHAO ; Cheng Long XIONG
Biomedical and Environmental Sciences 2025;38(9):1058-1070
OBJECTIVE:
Poxviruses are zoonotic pathogens that infect humans, mammals, vertebrates, and arthropods. However, the specific role of ticks in transmission and evolution of these viruses remains unclear.
METHODS:
Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses. Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.
RESULTS:
Fifty-eight poxvirus species, representing two subfamilies and 20 genera, were identified, with 212 poxviral sequences assembled. A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes. These genomic sequences contained fragments originating from rodents, archaea, and arthropods.
CONCLUSION
Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses. These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer, gene recombination, and gene mutations, thereby promoting co-existence and co-evolution with their hosts. This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.
Animals
;
Poxviridae/physiology*
;
Ticks/virology*
;
Phylogeny
;
Transcriptome
;
Evolution, Molecular
;
Poxviridae Infections/virology*
;
Genome, Viral
3.Molecular Characterization of New Recombinant Human Adenoviruses Detected in Children with Acute Respiratory Tract Infections in Beijing, China, 2022-2023.
Yi Nan GUO ; Ri DE ; Fang Ming WANG ; Zhen Zhi HAN ; Li Ying LIU ; Yu SUN ; Yao YAO ; Xiao Lin MA ; Shuang LIU ; Chunmei ZHU ; Dong QU ; Lin Qing ZHAO
Biomedical and Environmental Sciences 2025;38(9):1071-1081
OBJECTIVE:
Recombination events are common and serve as the primary driving force of diverse human adenovirus (HAdV), particularly in children with acute respiratory tract infections (ARIs). Therefore, continual monitoring of these events is essential for effective viral surveillance and control.
METHODS:
Respiratory specimens were collected from children with ARIs between January 2022 and December 2023. The penton base, hexon, and fiber genes were amplified from HAdV-positive specimens and sequenced to determine the virus type. In cases with inconsistent typing results, genes were cloned into the pGEM-T vector to detect recombination events. Metagenomic next-generation sequencing (mNGS) was performed to characterize the recombinant HAdV genomes.
RESULTS:
Among 6,771 specimens, 277 (4.09%, 277/6,771) were positvie for HAdV, of which 157 (56.68%, 157/277) were successfully typed, with HAdV-B3 being the dominant type (91.08%, 143/157), and 14 (5.05%, 14/277) exhibited inconsistent typing results, six of which belonged to species B. The penton base genes of these six specimens were classified as HAdV-B7, whereas their hexon and fiber genes were classified as HAdV-B3, resulting in a recombinant genotype designated P7H3F3, which closely resembled HAdV-B114. Additionally, a partial gene encoding L1 52/55 kD was identified, which originated from HAdV-B16.
CONCLUSION
A novel recombinant, P7H3F3, was identified, containing sequences derived from HAdV-B3 and HAdV-B7, which is similar to HAdV-B114, along with additional sequences from HAdV-B16.
Humans
;
Adenoviruses, Human/isolation & purification*
;
Respiratory Tract Infections/epidemiology*
;
Child, Preschool
;
Child
;
Recombination, Genetic
;
Male
;
Beijing/epidemiology*
;
Infant
;
Female
;
Phylogeny
;
Adenovirus Infections, Human/epidemiology*
;
Acute Disease
;
Genome, Viral
4.An efficient assembly method for a viral genome based on T7 endonuclease Ⅰ-mediated error correction.
Xuwei ZHANG ; Bin WEN ; Fei WANG ; Xuejun WANG ; Liyan LIU ; Shumei WANG ; Shengqi WANG
Chinese Journal of Biotechnology 2025;41(1):385-396
Gene synthesis is an enabling technology that supports the development of synthetic biology. The existing approaches for de novo gene synthesis generally have tedious operation, low efficiency, high error rates, and limited product lengths, being difficult to support the huge demand of synthetic biology. The assembly and error correction are the keys in gene synthesis. This study first designed the oligonucleotide sequences by reasonably splitting the virus genome of approximately 10 kb by balancing the parameters of sequence design software ability, PCR amplification ability, and assembly enzyme assembly ability. Then, two-step PCR was performed with high-fidelity polymerase to complete the de novo synthesis of 3.0 kb DNA fragments, and error correction reactions were performed with T7 endonuclease Ⅰ for the products from different stages of PCR. Finally, the virus genome was assembled by 3.0 kb DNA fragments from de novo synthesis and error correction and then sequenced. The experimental results showed that the proposed method successfully produced the DNA fragment of about 10 kb and reduced the probability of large fragment mutations during the assembly process, with the lowest error rate reaching 0.36 errors/kb. In summary, this study developed an efficient de novo method for synthesizing a viral genome of about 10 kb with T7 endonuclease Ⅰ-mediated error correction. This method enabled the synthesis of a 10 kb viral genome in one day and the correct plasmid of the viral genome in five days. This study optimized the de novo gene synthesis process, reduced the error rate, simplified the synthesis and assembly steps, and reduced the cost of viral genome assembly.
Genome, Viral/genetics*
;
Polymerase Chain Reaction/methods*
;
DNA, Viral/genetics*
;
Bacteriophage T7/enzymology*
;
Synthetic Biology/methods*
5.Metagenomic Analysis of Environmental Samples from Wildlife Rescue Station at Poyang Lake, China.
Jia LIU ; Xi Yan LI ; Wen Tao SONG ; Xiao Xu ZENG ; Hui LI ; Lei YANG ; Da Yan WANG
Biomedical and Environmental Sciences 2023;36(7):595-603
OBJECTIVE:
To improve the understanding of the virome and bacterial microbiome in the wildlife rescue station of Poyang Lake, China.
METHODS:
Ten smear samples were collected in March 2019. Metagenomic sequencing was performed to delineate bacterial and viral diversity. Taxonomic analysis was performed using the Kraken2 and Bracken methods. A maximum-likelihood tree was constructed based on the RNA-dependent RNA polymerase (RdRp) region of picornavirus.
RESULTS:
We identified 363 bacterial and 6 viral families. A significant difference in microbial and viral abundance was found between samples S01-S09 and S10. In S01-S09, members of Flavobacteriia and Gammaproteobacteria were the most prevalent, while in S10, the most prevalent bacteria class was Actinomycetia. Among S01-S09, members of Myoviridae and Herelleviridae were the most prevalent, while the dominant virus family of S10 was Picornaviridae. The full genome of the pigeon mesivirus-like virus (NC-BM-233) was recovered from S10 and contained an open reading frame of 8,124 nt. It showed the best hit to the pigeon mesivirus 2 polyprotein, with 84.10% amino acid identity. Phylogenetic analysis showed that RdRp clustered into Megrivirus B.
CONCLUSION
This study provides an initial assessment of the bacteria and viruses in the cage-smeared samples, broadens our knowledge of viral and bacterial diversity, and is a way to discover potential pathogens in wild birds.
Animals
;
Animals, Wild/genetics*
;
Lakes
;
Phylogeny
;
Picornaviridae/genetics*
;
Viruses/genetics*
;
China
;
Metagenomics
;
Genome, Viral
6.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis
7.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis
8.Cloning and functional verification of PhAEP gene, a key enzyme for biosynthesis of heterophyllin A in Pseudostellaria heterophylla.
Mi LU ; Yang YANG ; Tao ZHOU ; Wei ZHENG ; Jiao XU ; Hua HE ; Guo-Ping SHU ; Qing-Song YUAN ; Wei-Ke JIANG
China Journal of Chinese Materia Medica 2023;48(7):1851-1857
This paper aimed to study the role of asparagine endopeptidase(AEP) gene in the biosynthesis mechanism of cyclic peptide compounds in Pseudostellaria heterophylla. The transcriptome database of P. heterophylla was systematically mined and screened, and an AEP gene, tentatively named PhAEP, was successfully cloned. The heterologous function verification by Nicotiana benthamiana showed that the expression of the gene played a role in the biosynthesis of heterophyllin A in P. heterophylla. Bioinformatics analysis showed that the cDNA of PhAEP was 1 488 bp in length, encoding 495 amino acids with a molecular weight of 54.72 kDa. The phylogenetic tree showed that the amino acid sequence encoded by PhAEP was highly similar to that of Butelase-1 in Clitoria ternatea, reaching 80%. The sequence homology and cyclase active site analysis revealed that the PhAEP enzyme may specifically hydrolyse the C-terminal Asn/Asp(Asx) site of the core peptide in the HA linear precursor peptide of P. heterophylla, thereby participating in the ring formation of the linear precursor peptide. The results of real-time quantitative polymerase chain reaction(RT-qPCR) showed that the expression level of PhAEP was the highest in fruits, followed by in roots, and the lowest in leaves. The heterophyllin A of P. heterophylla was detected in N. benthamiana that co-expressed PrePhHA and PhAEP genes instantaneously. In this study, the PhAEP gene, a key enzyme in the biosynthesis of heterophyllin A in P. heterophylla, has been successfully cloned, which lays a foundation for further analysis of the molecular mechanism of PhAEP enzyme in the biosynthesis of heterophyllin A in P. heterophylla and has important significance for the study of synthetic biology of cyclic peptide compounds in P. heterophylla.
Genes, vif
;
Phylogeny
;
Plant Leaves/genetics*
;
Peptides, Cyclic
;
Cloning, Molecular
;
Caryophyllaceae/genetics*
9.Analysis of the whole genome traceability and transmission path simulation experiment of the local cluster COVID-19 epidemic.
Yun SONG ; Shi Dong LU ; Xiao HU ; Bi Cong WU ; Wei FAN ; Hong Xia MA ; Ying YE ; Dong Xiao LI ; Yi LI ; Bai Fan ZHANG ; Sheng ZHAO ; Hai Yan WEI ; Jing Jing PAN ; Da Cheng GUO ; Dong Yang ZHAO ; Wan Shen GUO ; Xue Yong HUANG
Chinese Journal of Preventive Medicine 2022;56(12):1795-1802
Objective: To trace and characterize the whole genome of SARS-CoV-2 of confirmed cases in the outbreak of COVID-19 on July 31, 2021 in Henan Province. Method: Genome-wide sequencing and comparative analysis were performed on positive nucleic acid samples of SARS-CoV-2 from 167 local cases related to the epidemic on July 31, 2021, to analyze the consistency and evolution of the whole genome sequence of virus. Results: Through high-throughput sequencing, a total of 106 cases of SARS-CoV-2 whole genome sequences were obtained. The results of genome analysis showed that the whole genome sequences of 106 cases belonged to the VOC/Delta variant strain (B.1.617.2 clade), and the whole genome sequences of 106 cases were shared with the genomes of 3 imported cases from Myanmar admitted to a hospital in Zhengzhou. On the basis of 45 nucleotide sites, 1-5 nucleotide variation sites were added, and the genome sequence was highly homologous. Conclusion: Combined with the comprehensive analysis of viral genomics, transmission path simulation experiments and epidemiology, it is determined that the local new epidemic in Henan Province is caused by imported cases in the nosocomial area, and the spillover has caused localized infection in the community. At the same time, it spills over to some provincial cities and results in localized clustered epidemics.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Genome, Viral
;
Epidemics
;
Phylogeny
10.Analysis on the sequence mutation and evolution of HBV genome in China.
Yong Hao GUO ; Qiao Hua DOU ; Qian LIU ; Jian Hua YANG ; Yuan Yu LYU ; Da Xing FENG ; Ming Hua SENG ; Yan Yang ZHANG ; Dong Yang ZHAO
Chinese Journal of Epidemiology 2022;43(8):1309-1314
Objective: To understand immune escape mutation, drug resistance mutation, and genome evolution information of HBV genome sequence in China. Methods: The whole genome sequence information of HBV in China submitted in GenBank from 1998 to 2021 was selected as the object for analysis. MAFFT method was used for cluster analysis. Analysis of immune escape and drug-resistant mutations was performed using the online tool Gen2pheno. The BEAST 1.10.4 was used for analysis the time evolution of HBV sequences. Results: A total of 5 426 sequences were included in the dataset and distributed in 19 provinces of China. Type C accounted for the highest proportion (59.1%, 3 211/5 426), followed by type B (33.7%, 1 833/5 426). Immune escape mutations were found in 764 sequences (14.1%, 764/5 426). At least one reverse transcriptase region mutation occurred in 98.1% of the sequences. The evolutionary roots of most HBV sequences in China date from around 1801 AD. Conclusion: HBV-resistant mutation rate is high in China. HBV genomes evolve slowly.
China/epidemiology*
;
DNA, Viral/genetics*
;
Drug Resistance, Viral/genetics*
;
Genome, Viral
;
Genotype
;
Hepatitis B virus/genetics*
;
Humans
;
Mutation

Result Analysis
Print
Save
E-mail