1.Molecular Characterization of New Recombinant Human Adenoviruses Detected in Children with Acute Respiratory Tract Infections in Beijing, China, 2022-2023.
Yi Nan GUO ; Ri DE ; Fang Ming WANG ; Zhen Zhi HAN ; Li Ying LIU ; Yu SUN ; Yao YAO ; Xiao Lin MA ; Shuang LIU ; Chunmei ZHU ; Dong QU ; Lin Qing ZHAO
Biomedical and Environmental Sciences 2025;38(9):1071-1081
OBJECTIVE:
Recombination events are common and serve as the primary driving force of diverse human adenovirus (HAdV), particularly in children with acute respiratory tract infections (ARIs). Therefore, continual monitoring of these events is essential for effective viral surveillance and control.
METHODS:
Respiratory specimens were collected from children with ARIs between January 2022 and December 2023. The penton base, hexon, and fiber genes were amplified from HAdV-positive specimens and sequenced to determine the virus type. In cases with inconsistent typing results, genes were cloned into the pGEM-T vector to detect recombination events. Metagenomic next-generation sequencing (mNGS) was performed to characterize the recombinant HAdV genomes.
RESULTS:
Among 6,771 specimens, 277 (4.09%, 277/6,771) were positvie for HAdV, of which 157 (56.68%, 157/277) were successfully typed, with HAdV-B3 being the dominant type (91.08%, 143/157), and 14 (5.05%, 14/277) exhibited inconsistent typing results, six of which belonged to species B. The penton base genes of these six specimens were classified as HAdV-B7, whereas their hexon and fiber genes were classified as HAdV-B3, resulting in a recombinant genotype designated P7H3F3, which closely resembled HAdV-B114. Additionally, a partial gene encoding L1 52/55 kD was identified, which originated from HAdV-B16.
CONCLUSION
A novel recombinant, P7H3F3, was identified, containing sequences derived from HAdV-B3 and HAdV-B7, which is similar to HAdV-B114, along with additional sequences from HAdV-B16.
Humans
;
Adenoviruses, Human/isolation & purification*
;
Respiratory Tract Infections/epidemiology*
;
Child, Preschool
;
Child
;
Recombination, Genetic
;
Male
;
Beijing/epidemiology*
;
Infant
;
Female
;
Phylogeny
;
Adenovirus Infections, Human/epidemiology*
;
Acute Disease
;
Genome, Viral
2.Progress on genome-wide association studies on mosaic chromosomal alterations.
Yu Xuan ZHAO ; Ming Yu SONG ; Can Qing YU ; Jun LYU ; Li Ming LI ; Dian Jian yi SUN
Chinese Journal of Epidemiology 2023;44(7):1146-1150
Mosaic chromosomal alteration (mCA) is referred to as large-scale somatic mutations on chromosomes, which results in diverse karyotypes in body. The mCA is regarded as one of the phenotypes of aging. Studies have revealed its associations with many chronic diseases such as hematopoietic cancers and cardiovascular diseases, but its genetic basis (e.g. genetic susceptibility variants) is still under-investigated. This paper reviews GWAS studies for mCA on autosomal chromosomes and sex chromosomes [mosaic loss of the Y chromosome (mLOY) and mosaic loss of the X chromosome (mLOX)] based on large population, respectively. Most of the genetic susceptibility loci found in studies for autosomal mCA were associated with copy-neutral loss of heterozygosity. The study of sex chromosome mCA focused on mosaic loss mutations. The number of genetic susceptibility loci for mLOY was high (up to 156), but it was relatively less for mLOX.
Humans
;
Male
;
Genome-Wide Association Study/methods*
;
Mosaicism
;
Genetic Predisposition to Disease
;
Chromosomes, Human, Y
;
Mutation
3.A Chinese interpretation for the "ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020".
Chinese Journal of Medical Genetics 2023;40(8):915-921
ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020, a supplementary practical guidelines, is based on the Standards and Guidelines for the Interpretation of Sequence Variations issued by the American Society for Medical Genetics and Genomics (ACMG) and the Association of Molecular Pathology (AMP) in 2015 by the British Medical Genetics Society under the Clinical Genomics Society (ACGS), and has integrated the detailed rules of standards developed by the ClinGen Sequence Variant Interpretation (SVI) Working Group by 2020. The further development of the ACMG/AMP guidelines is currently undertaken by the ClinGen SVI working group in the United States, which focuses on the classification of high penetrance and protein coding variants. ClinGen has established many expert panels on variants for specific diseases which required various evidence thresholds and is currently developing disease/gene specific guidelines. The British Medical Genetics Society has collected and integrated information on the guidelines for sequence variation classification and their extended rules, forming its own "2020 ACGS Best Practice Guidelines for Rare Disease Variation Classification" and is regularly updating it. The author has translated and summarized it for the reference of Chinese Medical Genetics Practitioners.
Humans
;
Genetic Testing
;
Genetic Variation
;
Genome, Human
;
Rare Diseases/genetics*
;
China
4.A large-scale retrospective analysis of copy number variations in single center using ACMG-ClinGen latest guidelines.
Yuxin ZHANG ; Jiangyang XUE ; Lulu YAN ; Yingwen LIU ; Danyan ZHUANG ; Min XIE ; Yibo CHEN ; Yu AN ; Yiping SHEN ; Haibo LI
Chinese Journal of Medical Genetics 2022;39(8):814-818
OBJECTIVE:
Through a retrospective large sample analysis of copy number variants in single center, we explored the technical standards for the interpretation and reporting of constitutional copy-number variants (CNVs) jointly proposed by the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen) in 2019, analyzing its impact on CNVs ratings and the improvement in the consistency of the classification of CNVs in clinical laboratories.
METHODS:
236 CNVs that assessed as pathogenic, uncertain significant (including likely pathogenic, uncertain and likely benign) by the 2011 ACMG guidelines between August 2018 and December 2019 in our center were re-analyzed. Four working group members of the center reclassified and evaluated 235 CNVs according to 2019 ACMG guidelines.
RESULTS:
The consistency of clinical significance classification of CNVs was 91% and the α test coefficient was 0.98 among four working group members. Compared with the 2011 and 2019 ACMG technical standards for the CNVs classification, evaluation of pathogenicity and uncertain significant is basically consistent. 90% (45/50) of likely pathogenic and likely benign CNVs were Re-evaluated as variants of uncertain significance, and the difference is significant.
CONCLUSION
The new version ACMG/ClinGen guidelines for the evaluation of CNVs developed semi-quantitative point-based scoring system and help to improve the consistency in clinical classifications. It can also make the interpretation of CNVs more standardized and transparent.
DNA Copy Number Variations
;
Genetic Testing
;
Genetic Variation
;
Genome, Human
;
Humans
;
Mutation
;
Retrospective Studies
5.Standards for the interpretation of constitutional copy number gain: Recommendation from the American College of Medical Genetics and Genomics (ACMG) and Clinical Genome Resource (ClinGen).
Xiaoli CHEN ; Shaofang SHANGGUAN ; Hua XIE ; Haoran LIU ; Weiqiang LIU ; Yu AN ; Yiping SHEN
Chinese Journal of Medical Genetics 2022;39(1):1-10
Copy number variants (CNVs) are common causes of human genetic diseases. CNVs detection has become a routine component of genetic testing, especially for pediatric neurodevelopmental disorders, multiple congenital abnormalities, prenatal evaluation of fetuses with structural anomalies detected by ultrasound. Although the technologies for CNVs detection are continuously improving, the interpretation is still challenging, with significant discordance across different laboratories. In 2020, the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen) developed a guideline for the interpreting and reporting of constitutional copy number variants, which introduced a quantitative, evidence-based scoring framework. Here, we detailed the key points of interpreting the copy number gain based on the guideline, used six examples of different categories to illuminate the scoring process and principles. We encourage a professional understanding and application of this guideline for the detected copy number gains in China in order to further improve the clinical evaluation accuracy and consistency across different laboratories.
Child
;
DNA Copy Number Variations
;
Female
;
Genetic Testing
;
Genetics, Medical
;
Genome, Human/genetics*
;
Genomics
;
Humans
;
Pregnancy
;
United States
6.Analysis of Genome-Wide DNA Methylation Differences in Umbilical Cord Blood Nucleated Red Blood Cells Between Term and Preterm Infants.
Nan-Nan YANG ; Zhen-Yuan LUO ; Man ZHOU ; Hong LIN ; Wei WANG ; Sheng-Wen HUANG
Journal of Experimental Hematology 2020;28(3):942-947
OBJECTIVE:
To analyze the genome-wide DNA methylation differences in umbilical cord blood nucleated red blood cells (NRBCs) between term and preterm infants by using the methylation gene chip technology, and to screen the genes of differential methylation and biological signaling pathways which may be related to the expression of γ-globin gene (HBG).
METHODS:
Umbilical cord bloods of eight term infants and eight preterm infants were collected, and NRBCs of each sample was isolated, then genome DNA was extracted and bisulfite conversion was performed. The DNA methylation sites were detected by using the Illumina 850K BeadChip. Differential DNA methylation sites were screened, and the function of genes with differential methylation was analyzed by using GO and KEGG enrichment analysis.
RESULTS:
Compared with the preterm group, 4749 differential DNA methylation sites of term group were screened out, including 4359 hypomethylation sites and 390 hypermethylation sites. GO and KEGG analysis indicated that the function of genes with differential methylation mainly involved in the hemopoietic system, growth and development process, Wnt and Notch signal pathways.
CONCLUSION
The differentical methylation sites at genome-wide level in umbilicar cord blood NRBC of term and preterm infants have been obtained, and the signal pathway and genes which possibily related with swiching the expression of γ-globin gene to β-globin gene have been screened-out. This study provide the new targets for studing the mechamism regulating expression of HBG gene.
DNA
;
DNA Methylation
;
Epigenesis, Genetic
;
Fetal Blood
;
Genome, Human
;
Humans
;
Infant, Newborn
;
Infant, Premature
7.A new bioinformatics approach for prediction of potential tumor neoantigens based on the cancer genome atlas dataset.
Chuanxi HUANG ; Jie MA ; Chen WU ; Yunping ZHU
Chinese Journal of Biotechnology 2019;35(7):1295-1306
Tumor-specific gene mutations might generate suitable neoepitopes for cancer immunotherapy that are highly immunogenic and absent in normal tissues. The high heterogeneity of the tumor genome poses a big challenge for precision cancer immunotherapy. Mutations characteristic of each tumor can help to distinguish it from other tumors. Based on these mutations' characteristic, it is possible to develop immunotherapeutic strategies for specific tumors. In this study, a tumor neoantigen prediction scheme was proposed, in which both the intracellular antigen presentation process and the ability to bind with extracellular MHC molecule were taken into consideration. The overall design is meritorious and may help reduce the cost for validation experiments compared with conventional methods. This strategy was tested with several cancer genome datasets in the TCGA database, and a number of potential tumor neoantigens were predicted for each dataset. These predicted neoantigens showed tumor type specificity and were found in 20% to 70% of cancer patients. This scheme might prove useful clinically in future.
Antigens, Neoplasm
;
Computational Biology
;
Genome, Human
;
Humans
;
Immunotherapy
;
Mutation
;
Neoplasms
8.SeqSQC: A Bioconductor Package for Evaluating the Sample Quality of Next-generation Sequencing Data.
Qian LIU ; Qiang HU ; Song YAO ; Marilyn L KWAN ; Janise M ROH ; Hua ZHAO ; Christine B AMBROSONE ; Lawrence H KUSHI ; Song LIU ; Qianqian ZHU
Genomics, Proteomics & Bioinformatics 2019;17(2):211-218
As next-generation sequencing (NGS) technology has become widely used to identify genetic causal variants for various diseases and traits, a number of packages for checking NGS data quality have sprung up in public domains. In addition to the quality of sequencing data, sample quality issues, such as gender mismatch, abnormal inbreeding coefficient, cryptic relatedness, and population outliers, can also have fundamental impact on downstream analysis. However, there is a lack of tools specialized in identifying problematic samples from NGS data, often due to the limitation of sample size and variant counts. We developed SeqSQC, a Bioconductor package, to automate and accelerate sample cleaning in NGS data of any scale. SeqSQC is designed for efficient data storage and access, and equipped with interactive plots for intuitive data visualization to expedite the identification of problematic samples. SeqSQC is available at http://bioconductor.org/packages/SeqSQC.
Breast Neoplasms
;
genetics
;
Cohort Studies
;
Continental Population Groups
;
genetics
;
Female
;
Genome, Human
;
High-Throughput Nucleotide Sequencing
;
methods
;
standards
;
Humans
;
Software
;
Whole Exome Sequencing
9.Analysis of unmapped regions associated with long deletions in Korean whole genome sequences based on short read data
Yuna LEE ; Kiejung PARK ; Insong KOH
Genomics & Informatics 2019;17(4):40-
While studies aimed at detecting and analyzing indels or single nucleotide polymorphisms within human genomic sequences have been actively conducted, studies on detecting long insertions/deletions are not easy to orchestrate. For the last 10 years, the availability of long read data of human genomes from PacBio or Nanopore platforms has increased, which makes it easier to detect long insertions/deletions. However, because long read data have a critical disadvantage due to their relatively high cost, many next generation sequencing data are produced mainly by short read sequencing machines. Here, we constructed programs to detect so-called unmapped regions (UMRs, where no reads are mapped on the reference genome), scanned 40 Korean genomes to select UMR long deletion candidates, and compared the candidates with the long deletion break points within the genomes available from the 1000 Genomes Project (1KGP). An average of about 36,000 UMRs were found in the 40 Korean genomes tested, 284 UMRs were common across the 40 genomes, and a total of 37,943 UMRs were found. Compared with the 74,045 break points provided by the 1KGP, 30,698 UMRs overlapped. As the number of compared samples increased from 1 to 40, the number of UMRs that overlapped with the break points also increased. This eventually reached a peak of 80.9% of the total UMRs found in this study. As the total number of overlapped UMRs could probably grow to encompass 74,045 break points with the inclusion of more Korean genomes, this approach could be practically useful for studies on long deletions utilizing short read data.
Genome
;
Genome, Human
;
Humans
;
Nanopores
;
Polymorphism, Single Nucleotide
10.Optimization of Microenvironments Inducing Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Endothelial Cell-Like Cells
Se Young OH ; Da Hyeon CHOI ; Yoon Mi JIN ; Yeonsil YU ; Ha Yeong KIM ; Gyungah KIM ; Yoon Shin PARK ; Inho JO
Tissue Engineering and Regenerative Medicine 2019;16(6):631-643
BACKGROUND: Stem cell engineering is appealing consideration for regenerating damaged endothelial cells (ECs) because stem cells can differentiate into EC-like cells. In this study, we demonstrate that tonsil-derived mesenchymal stem cells (TMSCs) can differentiate into EC-like cells under optimal physiochemical microenvironments.METHODS: TMSCs were preconditioned with Dulbecco's Modified Eagle Medium (DMEM) or EC growth medium (EGM) for 4 days and then replating them on Matrigel to observe the formation of a capillary-like network under light microscope. Microarray, quantitative real time polymerase chain reaction, Western blotting and immunofluorescence analyses were used to evaluate the expression of gene and protein of EC-related markers.RESULTS: Preconditioning TMSCs in EGM for 4 days and then replating them on Matrigel induced the formation of a capillary-like network in 3 h, but TMSCs preconditioned with DMEM did not form such a network. Genome analyses confirmed that EGM preconditioning significantly affected the expression of genes related to angiogenesis, blood vessel morphogenesis and development, and vascular development. Western blot analyses revealed that EGM preconditioning with gelatin coating induced the expression of endothelial nitric oxide synthase (eNOS), a mature EC-specific marker, as well as phosphorylated Akt at serine 473, a signaling molecule related to eNOS activation. Gelatin-coating during EGM preconditioning further enhanced the stability of the capillary-like network, and also resulted in the network more closely resembled to those observed in human umbilical vein endothelial cells.CONCLUSION: This study suggests that under specific conditions, i.e., EGM preconditioning with gelatin coating for 4 days followed by Matrigel, TMSCs could be a source of generating endothelial cells for treating vascular dysfunction.
Blood Vessels
;
Blotting, Western
;
Eagles
;
Endothelial Cells
;
Fluorescent Antibody Technique
;
Gelatin
;
Genome
;
Human Umbilical Vein Endothelial Cells
;
Mesenchymal Stromal Cells
;
Morphogenesis
;
Nitric Oxide Synthase Type III
;
Palatine Tonsil
;
Real-Time Polymerase Chain Reaction
;
Serine
;
Stem Cells

Result Analysis
Print
Save
E-mail