1.Discovery of fernane-type triterpenoids from Diaporthe discoidispora using genome mining and HSQC-based SMART technology.
Yajing WANG ; Yongfu LI ; Yan DONG ; Chunyan YU ; Chengwei LIU ; Chang LI ; Yi SUN ; Yuehu PEI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):368-376
In this study, we employed a combination of genome mining and heteronuclear single quantum coherence (HSQC)-based small molecule accurate recognition technology (SMART) technology to search for fernane-type triterpenoids. Initially, potential endophytic fungi were identified through genome mining. Subsequently, fine fractions containing various fernane-type triterpenoids were selected using HSQC data collection and SMART prediction. These triterpenoids were then obtained through targeted isolation and identification. Finally, their antifungal activity was evaluated. As a result, three fernane-type triterpenoids, including two novel compounds, along with two new sesquiterpenes and four known compounds were isolated from one potential strain, Diaporthe discoidispora. Their structures were elucidated through analysis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations were determined using single-crystal X-ray diffraction analysis and electron capture detector (ECD) analysis. Compound 3 exhibited moderate antifungal activity against Candida albicans CMCC 98001 and Aspergillus niger.
Triterpenes/isolation & purification*
;
Antifungal Agents/isolation & purification*
;
Molecular Structure
;
Candida albicans/drug effects*
;
Ascomycota/genetics*
;
Magnetic Resonance Spectroscopy
;
Aspergillus niger/drug effects*
;
Genome, Fungal
;
Microbial Sensitivity Tests
2.Advances in the application of genome editing technologies in plant pathogenic fungi.
Chinese Journal of Biotechnology 2025;41(10):3683-3700
Filamentous fungi represent an important group of eukaryotic microorganisms with diverse ecological functions and ubiquitous distribution in various ecosystems. Among them, many species are closely associated with agriculture, functioning as major plant pathogens that cause yield losses and produce mycotoxins to compromise both the quality and safety of agricultural products. In recent years, the CRISPR/Cas system has emerged as a powerful and programmable genome editing tool, and it has been extensively applied to the genetic study of plant pathogenic fungi. This technology has greatly facilitated the investigation of pathogenic mechanisms, mycotoxin biosynthetic pathways and key gene functions, antifungal resistance, and rapid pathogen detection. This review summarizes the development of CRISPR/Cas systems and the key strategies for their application in plant pathogenic fungi and makes an outlook on the practical deployment. With the continuous advancement of gene editing technologies, emerging fungal-adapted editing systems hold great promise for advancing functional genomics and enabling innovations in disease-resistant breeding and sustainable crop protection.
Gene Editing/methods*
;
Fungi/pathogenicity*
;
CRISPR-Cas Systems/genetics*
;
Plant Diseases/microbiology*
;
Plants/microbiology*
;
Genome, Fungal/genetics*
3.Differential transcription of mating-type genes during sexual reproduction of natural Cordyceps sinensis.
Xiu-Zhang LI ; Yu-Ling LI ; Jia-Shi ZHU
China Journal of Chinese Materia Medica 2023;48(10):2829-2840
Natural Cordyceps sinensis as an insect-fungal complex, which is developed after Ophiocordyceps sinensis infects a larva of Hepialidae family. Seventeen genotypes of O. sinensis have been identified in natural C. sinensis. This paper summarized the literature reports and GenBank database regarding occurrence and transcription of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in natural C. sinensis, in Hirsutella sinensis(GC-biased Genotype #1 of O. sinensis), to infer the mating pattern of O. sinensis in the lifecycle of natural C. sinensis. The mating-type genes and transcripts of MAT1-1 and MAT1-2 idiomorphs were identified in the metagenomes and metatranscriptomes of natural C. sinensis. However, their fungal sources are unclear because of co-colonization of several genotypes of O. sinensis and multiple fungal species in natural C. sinensis. The mating-type genes of MAT1-1 and MAT1-2 idiomorphs were differentially present in 237 H. sinensis strains, constituting the genetic control of the O. sinensis reproduction. Transcriptional control of the O. sinensis reproduction includes: differential transcription or silencing of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs, and the MAT1-2-1 transcript with unspliced intron I that contains 3 stop codons. Research on the H. sinensis transcriptome demonstrated differential and complementary transcriptions of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in Strains L0106 and 1229, which may become mating partners to accomplish physiological heterothallism. The differential occurrence and transcription of the mating-type genes in H. sinensis are inconsistent with the self-fertilization hypothesis under homothallism or pseudohomothallism, but instead indicate the need of mating partners of the same H. sinensis species, either monoecious or dioecious, for physiological heterothallism, or heterospecific species for hybridization. Multiple GC-and AT-biased genotypes of O. sinensis were identified in the stroma, stromal fertile portion(densely covered with numerous ascocarps) and ascospores of natural C. sinensis. It needs to be further explored if the genome-independent O. sinensis genotypes could become mating partners to accomplish sexual reproduction. S. hepiali Strain FENG experienced differential transcription of the mating-type genes with a pattern complementary to that of H. sinensis Strain L0106. Additional evidence is needed to explore a hybridization possibility between S. hepiali and H. sinensis, whether they are able to break the interspecific reproductive isolation. Genotypes #13~14 of O. sinensis feature large DNA segment reciprocal substitutions and genetic material recombination between 2 heterospecific parental fungi, H. sinensis and an AB067719-type fungus, indicating a possibility of hybridization or parasexuality. Our analysis provides important information at the genetic and transcriptional levels regarding the mating-type gene expression and reproduction physiology of O. sinensis in the sexual life of natural C. sinensis and offers crucial reproductive physiology evidence, to assist in the design of the artificial cultivation of C. sinensis to supplement the increasing scarcity of natural resource.
Cordyceps/genetics*
;
Genes, Mating Type, Fungal/genetics*
;
Reproduction/genetics*
4.A potential mating-type biomarker to detect pathogenic Ganoderma species
Doris Lau ; Lee Weng Wah ; Chong Mei Ling ; Tee Sue Sean ; Jonathan Guyang Ling ; Anis Farhan Fatimi Ab Wahab ; Farah Diba Abu Bakar
Malaysian Journal of Microbiology 2022;18(3):331-337
Aims:
The basal stem rot disease in oil palm is caused by the pathogenic Ganoderma boninense, which is infectious after mating and forming dikaryotic hyphae. This study was aimed to generate a mating-type biomarker for the detection of pathogenic Ganoderma species.
Methodology and results:
Mating-type region of Ganoderma was amplified using polymerase chain reaction (PCR) and primers flanking the mating-type region of other basidiomycetes. Amplified fragments were sequenced and were identified as the Ganoderma pheromone receptor gene of matB locus called the gprb2 gene. Using this biomarker, the pheromone receptor gene was detected in a total of 107 pathogenic Ganoderma spp. while the gene was not detected in the non-pathogenic Ganoderma lucidum. Phylogenetic tree analyses of the gene fragment encoding the partial amino acid sequence of gprb2 showed clades of close evolutionary relationship among the 107 pathogenic Ganoderma spp. Phylogenetic analyses using deduced amino acid sequences of the Ganoderma pheromone receptor b2 gene, gprb2 with homologous pheromone receptors of other basidiomycetous fungi revealed high conservation of this pheromone receptor within their respective taxonomy.
Conclusion, significance and impact of study
A potential mating-type biomarker was successfully identified that could detect pathogenic Ganoderma spp. The research findings will be helpful in oil palm screening to detect pathogenic Ganoderma spp. and gain further insight into the role of the mating-type loci of Ganoderma towards its pathogenesis in causing the basal stem rot disease of oil palm.
Genes, Mating Type, Fungal
;
Ganoderma
5.A landscape of transcriptome analysis of three sclerotia growth stages in Polyporus umbellatus.
Xiao-Yu BIAN ; Tian-Lin PEI ; Zong-Suo LIANG ; Zhao-Yang CHANG
China Journal of Chinese Materia Medica 2019;44(17):3718-3723
Polyporus umbellatus,a traditional Chinese precious medicine as long been used for eliminating dampness,diuresis and have effect on cancer,getting more and more popularly in China recently. And the developmental metabolic process of the medicinal fungus,P. umbellatus,has been gotten more attention. This study is for the first time to explore the three sclerotial growth stages in P. umbellatus,named " white Polyporus"( initial phase), " grey Polyporus"( developmental phase) and " black Polyporus"( mature phase),by utilizing the de novo transcriptome assembly analysis technology. Finally,we obtained 88. 12 Gb sequence containing85 235 unigenes( ≥200 bp) assembled and 100% were annotated. We identified genes differentially expressed among the three stages of the sclerotia and screened out MFSgst,ERG4/ERG24,WD40,Rho A,CYP450,PKS,GSase and CHS1,which may contribute to the production of medicinal secondary metabolites and the defense mechanism against the environmental stress and biological invasion. We did the qRT-PCR trial to verify our results,which is in line with expectations. Our results are purposed to unearth the molecular mechanism of the accumulation of active constituents in different stages of Polyporus sclerotia which can be applied in the production and protection of Polyporus effectively.
China
;
Gene Expression Profiling
;
Genes, Fungal
;
Medicine, Chinese Traditional
;
Polyporus
;
genetics
;
growth & development
;
Transcriptome
6.A Novel Rapid Fungal Promoter Analysis System Using the Phosphopantetheinyl Transferase Gene, npgA, in Aspergillus nidulans.
Ha Yeon SONG ; Dahye CHOI ; Dong Min HAN ; Dae Hyuk KIM ; Jung Mi KIM
Mycobiology 2018;46(4):429-439
To develop a convenient promoter analysis system for fungi, a null-pigment mutant (NPG) of Aspergillus nidulans was used with the 4′-phosphopantetheinyl transferase (PPTase) gene, npgA, which restores the normal pigmentation in A. nidulans, as a new reporter gene. The functional organization of serially deleted promoter regions of the A. nidulans trpC gene and the Cryphonectria parasitica crp gene in filamentous fungi was representatively investigated to establish a novel fungal promoter assay system that depends on color complementation of the NPG mutant with the PPTase npgA gene. Several promoter regions of the trpC and crp genes were fused to the npgA gene containing the 1,034-bp open reading frame and the 966-bp 3’ downstream region from the TAA, and the constructed fusions were introduced into the NPG mutant in A. nidulans to evaluate color recovery due to the transcriptional activity of the sequence elements. Serial deletion of the trpC and crp promoter regions in this PPTase reporter assay system reaffirmed results in previous reports by using the fungal transformation step without a laborious verification process. This approach suggests a more rapid and convenient system than conventional analyses for fungal gene expression studies.
Aspergillus nidulans*
;
Aspergillus*
;
Complement System Proteins
;
Fungi
;
Genes, Fungal
;
Genes, Reporter
;
Open Reading Frames
;
Pigmentation
;
Promoter Regions, Genetic
;
Transferases*
7.ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection.
Yujie ZHOU ; Min LIAO ; Chengguang ZHU ; Yao HU ; Ting TONG ; Xian PENG ; Mingyun LI ; Mingye FENG ; Lei CHENG ; Biao REN ; Xuedong ZHOU
International Journal of Oral Science 2018;10(2):9-9
The hyphal development of Candida albicans (C. albicans) has been considered as an essential virulent factor for host cell damage. However, the missing link between hyphae and virulence of C. albicans is also been discovered. Here, we identified that the null mutants of ERG3 and ERG11, two key genes in ergosterol biosynthesis pathway, can form typical hyphae but failed to cause the oral mucosal infection in vitro and in vivo for the first time. In particular, the erg3Δ/Δ and erg11Δ/Δ strains co-cultured with epithelial cells significantly reduced the adhesion, damage, and cytokine (interleukin-1α (IL-1α)) production, whereas the invasion was not affected in vitro. Importantly, they were incapable of extensive hyphal invasion, formation of micro-abscesses, and tongue epithelium damage compared to wild type due to the decrease of the colonization and epithelial infection area in a murine oropharyngeal candidiasis model. The fluconazole (FLC), an antifungal targeted at ergosterol biosynthesis, relieved the epithelial infection of C. albicansin vitro and in vivo even under non-growth inhibitory dosage confirming the virulent contribution of ergosterol biosynthesis pathway. The erg3Δ/Δ and erg11Δ/Δ strains were cleared by macrophages similar to wild type, whereas their virulence factors including agglutinin-like sequence 1 (Als1), secreted aspartyl proteinase 6 (Sap6), and hyphal wall protein-1 (Hwp1) were significantly reduced indicated that the non-toxicity might not result from the change on immune tolerance but the defective virulence. The incapacity of erg3Δ/Δ and erg11Δ/Δ in epithelial infection highlights the contribution of ergosterol biosynthesis pathway to C. albicans pathogenesis and fluconazole can not only eliminate the fungal pathogens but also reduced their virulence even at low dosage.
Animals
;
Antifungal Agents
;
pharmacology
;
Candida albicans
;
drug effects
;
genetics
;
pathogenicity
;
Candidiasis, Oral
;
drug therapy
;
genetics
;
microbiology
;
Fluconazole
;
pharmacology
;
Genes, Fungal
;
genetics
;
Mice
;
Microscopy, Electron, Scanning
;
Potassium Channels
;
genetics
;
Virulence
8.Discovery of differential sequences for improving breeding and yield of cultivated Ophiocordyceps sinensis through ITS sequencing and phylogenetic analysis.
Qi-Qing CHENG ; Chun-Song CHENG ; Yue OUYANG ; Chi-Chou LAO ; Hao CUI ; Yu XIAN ; Zhi-Hong JIANG ; Wen-Jia LI ; Hua ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(10):749-755
To accelerate the breeding process of cultivated Ophiocordyceps sinensis and increase its yield, it is important to identify molecular fingerprint of dominant O. sinensis. In the present study, we collected 3 batches of industrially cultivated O. sinensis product with higher yield than the others and compared their internal transcribed spacer (ITS) sequences with the wild and the reported. The ITS sequence was obtained by bidirectional sequencing and analyzed with molecular systematics as a DNA barcode for rapid and accurate identification of wild and cultivated O. sinensis collected. The ITS sequences of O. sinensis with detailed collection loci on NCBI were downloaded to construct a phylogenetic tree together with the sequences obtained from the present study by using neighbor-joining method based on their evolution relationship. The information on collection loci was analyzed with ArcGIS 10.2 to demonstrate the geographic distribution of these samples and thus to determine the origin of the dominant samples. The results showed that all wild and cultivated samples were identified as O. sinensis and all sequences were divided into seven phylogenetic groups in the tree. Those groups were precisely distributed on the map and the process of their system evolution was clearly presented. The three cultivated samples were clustered into two dominant groups, showing the correlation between the industrially cultivated samples and the dominant wild samples, which can provide references for its optimized breeding in the future.
Breeding
;
DNA, Fungal
;
genetics
;
DNA, Intergenic
;
genetics
;
Genes, Mating Type, Fungal
;
Hypocreales
;
chemistry
;
classification
;
genetics
;
growth & development
;
Phylogeny
9.Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae.
Lu-Yao HUANG ; Min WU ; Xiao-Yun YU ; Lin LI ; Fu-Cheng LIN ; Xiao-Hong LIU
Journal of Zhejiang University. Science. B 2018;19(1):79-84
In this study, we analyzed the physical interactions of the dominant negative isoform of MoYpt7. Our results show that MoYpt7 interacts with MoGdi1. The dominant negative isoform of MoYpt7 (dominant negative isoform, N125I) is essential for colony morphology, conidiation, and pathogenicity in the rice blast fungus. These results further demonstrate the biological functions of MoYpt7 in Magnaporthe oryzae.
DNA Mutational Analysis
;
Fungal Proteins/metabolism*
;
Gene Expression Regulation, Fungal
;
Genes, Fungal
;
Green Fluorescent Proteins/metabolism*
;
Magnaporthe/genetics*
;
Microscopy, Fluorescence
;
Mutation
;
Oryza/microbiology*
;
Phenotype
;
Plant Diseases/microbiology*
;
Protein Isoforms
10.Progress in omics research of Aspergillus niger.
Yufei SUI ; Liming OUYANG ; Hongzhong LU ; Yingping ZHUANG ; Siliang ZHANG
Chinese Journal of Biotechnology 2016;32(8):1010-1025
Aspergillus niger, as an important industrial fermentation strain, is widely applied in the production of organic acids and industrial enzymes. With the development of diverse omics technologies, the data of genome, transcriptome, proteome and metabolome of A. niger are increasing continuously, which declared the coming era of big data for the research in fermentation process of A. niger. The data analysis from single omics and the comparison of multi-omics, to the integrations of multi-omics based on the genome-scale metabolic network model largely extends the intensive and systematic understanding of the efficient production mechanism of A. niger. It also provides possibilities for the reasonable global optimization of strain performance by genetic modification and process regulation. We reviewed and summarized progress in omics research of A. niger, and proposed the development direction of omics research on this cell factory.
Aspergillus niger
;
genetics
;
Fermentation
;
Genome, Fungal
;
Metabolic Networks and Pathways
;
Metabolome
;
Proteome
;
Transcriptome


Result Analysis
Print
Save
E-mail