1.Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis.
Baocheng CHAI ; Yulin JIANG ; Ye NI ; Ruizhi HAN
Chinese Journal of Biotechnology 2022;38(2):749-759
Genistein and its monoglucoside derivatives play important roles in food and pharmaceuticals fields, whereas their applications are limited by the low water solubility. Glycosylation is regarded as one of the effective approaches to improve water solubility. In this paper, the glycosylation of sophoricoside (genistein monoglucoside) was investigated using a cyclodextrin glucosyltransferase from Penibacillus macerans (PmCGTase). Saturation mutagenesis of D182 from PmCGTase was carried out. Compared with the wild-type (WT), the variant D182C showed a 13.42% higher conversion ratio. Moreover, the main products sophoricoside monoglucoside, sophoricoside diglucoside, and sophoricoside triglucoside of the variant D182C increased by 39.35%, 56.05% and 64.81% compared with that of the WT, respectively. Enzymatic characterization showed that the enzyme activities (cyclization, hydrolysis, disproportionation) of the variant D182C were higher than that of the WT, and the optimal pH and temperature of the variant D182C were 6 and 40℃, respectively. Kinetics analysis showed the variant D182C has a lower Km value and a higher kcat/Km value than that of the WT, indicating the variant D182C has enhanced affinity to substrate. Structure modeling and docking analysis demonstrated that the improved glycosylation efficiency of the variant D182C may be attributed to the increased interactions between residues and substrate.
Cyclodextrins
;
Genistein
;
Glucosyltransferases/metabolism*
;
Glycosylation
;
Kinetics
2.Molecular cloning and functional characterization of an isoflavone glucosyltransferase from Pueraria thomsonii.
Hai-Yan DUAN ; Jian WANG ; Liang-Ping ZHA ; Hua-Sheng PENG ; Yu-Ping ZHAO ; Yuan YUAN ; Lu-Qi HUANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(2):133-138
Pueraria thomsonii has long been used in traditional Chinese medicine. Isoflavonoids are the principle pharmacologically active components, which are primarily observed as glycosyl-conjugates and accumulate in P. thomsonii roots. However, the molecular mechanisms underlying the glycosylation processes in (iso)flavonoid biosynthesis have not been thoroughly elucidated. In the current study, an O-glucosyltransferase (PtUGT8) was identified in the medicinal plant P. thomsonii from RNA-seq database. Biochemical assays of the recombinant PtUGT8 showed that it was able to glycosylate chalcone (isoliquiritigenin) at the 4-OH position and glycosylate isoflavones (daidzein, formononetin, and genistein) at the 7-OH or 4'-OH position, exhibiting no enzyme activity to flavonones (liquiritigenin and narigenin) in vitro. The identification of PtUGT8 may provide a useful enzyme catalyst for efficient biotransformation of isoflavones and other natural products for food or pharmacological applications.
Cloning, Molecular
;
Genistein
;
Glucosyltransferases/metabolism*
;
Isoflavones/pharmacology*
;
Pueraria/chemistry*
3.Genistein attenuates LPS-induced inflammatory injury of rat dorsal root ganglion neuron via down-regulating HDAC6.
Songlin ZHOU ; Junqing HUANG ; Ke LI ; Shuaigang DU ; Bin YANG ; Zhonghua GUO
Journal of Central South University(Medical Sciences) 2022;47(6):707-716
OBJECTIVES:
Neuropathic pain (NP) is a chronic pain caused by somatosensory neuropathy or disease, and genistein (Gen) might be a potential drug for the treatment of NP. Therefore, this study aims to investigate the effect of Gen on lipopolysaccharide (LPS)-induced inflammatory injury of dorsal root ganglion neuron (DRGn) in rats and the possible molecular mechanism.
METHODS:
The DRGn of 1-day-old juvenile rats were taken for isolation and culture. The DRGn in logarithmic growth phase were divided into a control group, a LPS group, a tubastatin hydrochloride (TSA)+LPS group, a Gen1+LPS group, a Gen2+LPS group, a Gen2+LPS+TSA group, a Gen2+pcDNA-histone deacetylase 6 (HDAC6)+LPS group, and a Gen2+pcDNA3.1+LPS group. The LPS group was treated with 1 μg/mL LPS for 24 h; the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group were treated with 5 μmol/L TSA, 5 μmol/L Gen, 10 μmol/L Gen respectively for 0.5 h, and then added 1 μg/mL LPS for 24 h; the Gen2+TSA+LPS group was treated with 10 μmol/L Gen and 5 μmol/L TSA for 0.5 h and then added 1 μg/mL LPS for 24 h; the Gen2+pcDNA-HDAC6+LPS group and the Gen2+pcDNA3.1+LPS group received 100 nmol/L pcDNA-HDAC6 and pcDNA3.1 plasmids respectively, and 24 h after transfection, 10 μmol/L Gen was pretreated for 0.5 h, and then added 1 μg/mL LPS for 24 h. Real-time RT-PCR was used to detect the HDAC6 mRNA expression in DRGn; CCK-8 method was used to detect cell viability of DRGn; flow cytometry was used to detect cell apoptosis of DRGn; ELISA was used to detect the levels of IL-1β, IL-6, and TNF-α in DRGn culture supernatant; Western blotting was used to detect the protein expression of HDAC6, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κB p65 in DRGn.
RESULTS:
Compared with the control group, the expression levels of HDAC6 mRNA and protein, the expression levels of TLR4 and MyD88 protein in DRGn of LPS group rats were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, and the activity of DRGn was significantly decreased, the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05). Compared with the LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group and the Gen2+TSA+LPS group were significantly down-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly decreased, the activity of DRGn was significantly increased, the apoptosis rate was significantly decreased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly decreased (all P<0.05), and the above changes were most obvious in the Gen2+TSA+LPS group. Compared with the Gen2+LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the Gen2+pcDNA-HDAC6+LPS group were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, the activity of DRGn was significantly decreased, and the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05).
CONCLUSIONS
Gen can alleviate LPS-induced DRGn inflammatory injury in rats, which might be related to down-regulating the expression of HDAC6 and further inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Ganglia, Spinal
;
Genistein/pharmacology*
;
Histone Deacetylase 6/metabolism*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
;
Myeloid Differentiation Factor 88
;
NF-kappa B/metabolism*
;
Neurons/metabolism*
;
RNA, Messenger
;
Rats
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
4.Effects of genistein on N-glycolylneuraminic acid content in rats and the interaction with sialyl transferase.
Hongying LI ; Rui CHANG ; Qiujin ZHU ; Xuling ZHU ; Aqi XU ; Yingzi ZHOU ; Yinxue YAN
Chinese Journal of Biotechnology 2019;35(5):857-870
To investigate the effects of genistein (Gen) on the biosynthesis of N-glycolylneuraminic acid (Neu5Gc) in rats, 80 4-week-old male SD rats were randomly equally into the control and genistein groups. The rats of control and genistein groups were fed 5% ethanol and 300 mg/(kg·d) genistein respectively by gavage. The contents of Neu5Gc in hind leg muscle, kidney and liver tissues of rats were measured by using high performance liquid chromatography coupled with fluorescence detector (HPLC/FLD), and the mechanism of inhibition of Neu5Gc synthesis was investigated by using the molecular docking of Gen and sialyltransferase. On the 15th day, the content of Neu5Gc in hind leg muscle and liver tissues decreased 13.77% and 15.45%, respectively, and there was no significant change in the content of Neu5Gc in kidney tissues. On the 30th day, the content of Neu5Gc in liver tissues decreased 13.35%, however, there was no significant change in the content of Neu5Gc in kidney tissues and Neu5Gc was not detected in hind leg muscle. The content of Neu5Gc in hind leg muscle, kidney and liver tissues decreased respectively 32.65%, 32.78%, 16.80% and 12.72%, 11.42%, 12.30% while rats fed on the 45th and the 60th days. Genistein has formed the hydrogen bond with sialyltransferase activity site residues His319, Ser151, Gly293, Thr328 and formed a hydrophobic interactions with the residues His302, His301, Trp300, Ser271, Phe292, Thr328, Ser325 and Ile274. The results of molecular docking indicated that the weak intermolecular interaction was the main cause of genistein inhibiting sialyltransferase activity. The research results provided an experimental basis for the subsequent reduction of Neu5Gc in red meat before slaughter.
Animals
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Genistein
;
pharmacology
;
Male
;
Molecular Docking Simulation
;
Neuraminic Acids
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Transferases
;
metabolism
5.Effect of Isoflavones and Genistein on Glucose Metabolism in Peri- and Post-Menopausal Women: An Overview of Meta-Analysis
Afiat MALIEHE ; Sara GHAHREMANI ; Sara KHARGHANI ; Masumeh GHAZANFARPOUR ; Khatereh SHARIATI ; Maryam KAZEMI ; Talat KHADIVZADEH
Journal of Menopausal Medicine 2019;25(2):69-73
The purpose of the present overview of meta-analysis is to summarize and critically assess the effect of isoflavones and genistein on glucose metabolism among the peri- and post-menopausal women. Two independent authors searched the databases of MEDLINE, Scopus and Cochrane Library for meta-analysis. Three databases were searched from inception to January 2018. Methodological quality of each meta-analysis of randomized controlled trials was evaluated using the AMSTAR (a measurement tool used to assess systematic reviews). Four meta-analyses were included to the current overview. Fasting insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) values were significantly lower in peri-menopausal and postmenopausal. Two meta-analyses showed that treatment with isoflavones could not alter fasting blood glucose. However, one meta-analysis depicted that isoflavones significantly improved blood glucose levels in non-Asian postmenopausal women. Treatment with genistein could have significant beneficial effects on fasting insulin, blood glucose and HOMA-IR in comparison to the control group. Regardless of the population, the treatment with genistein is effective in improving fasting insulin, HOMA-IR and glucose levels. Nevertheless, the high heterogeneity among studies and poor methodology of reviews made it difficult to draw a definite conclusion on the positive impacts of soy on glucose metabolism.
Blood Glucose
;
Fasting
;
Female
;
Genistein
;
Glucose Metabolism Disorders
;
Glucose
;
Humans
;
Insulin
;
Insulin Resistance
;
Insulins
;
Isoflavones
;
Menopause
;
Metabolism
;
Population Characteristics
6.Protective effects of genistein on Aβ₂₅₋₃₅-induced PC12 cell injury via regulating CaM-CaMKIV signaling pathway.
Biao CAI ; Shu YE ; Yan WANG ; Ru-Peng HUA ; Ting-Ting WANG ; Li Jing LIX ; Ai-Juan JIANG ; Guo-Ming SHEN
China Journal of Chinese Materia Medica 2018;43(3):571-576
Genistein is a kind of isoflavone compounds, also called phytoestrogens, with clinical effects on cardiovascular disease, cancer and postmenopausal-related gynecological diseases, and also has the potentiality in the prevention and treatment of Alzheimer's disease(AD). In this study, the protective effect of genistein on Aβ₂₅₋₃₅-induced PC12 cell injury and effect on CaM-CaMKIV signaling pathway were observed to investigate its mechanism for AD. PC12 cells were cultured and then the safe concentration of genistein and the modeling concentration and optimal time point of administration of Aβ₂₅₋₃₅ were screened by MTT assay. After being pretreated with different concentrations of genistein(25, 50, 100 μmol·L⁻¹) on PC12 cells, the AD model of PC12 cells was induced by Aβ₂₅₋₃₅. Then the survival rate of cells was detected by MTT assay; morphological change of cells was observed under the inverted microscope, and apoptosis of cells was assessed by AO/EB fluorescence staining; the neuroprotective effects of genistein on AD cell model were observed and the optimal concentration of genistein was determined. Expressions of mRNA and protein levels of CaM, CaMKK, CaMKIV and tau were detected by qRT-PCR and Western blot assay, respectively. The results showed that as compared with the blank group, the cell survival rate was decreased; the cell damage and apoptosis were increased; and the expressions of mRNA and protein levels of CaM, CaMKK, CaMKIV and tau were increased in AD model group. Genistein could significantly improve the cell survival rate, reduce the cell damage and apoptosis of AD cell model, and significantly down-regulate the expressions of mRNA and protein levels of CaM, CaMKK, CaMKIV and tau of AD cell model. These results indicated that genistein has obviously neuroprotective effect on the AD cell model induced by Aβ₂₅₋₃₅, and the mechanism may be related to the down-regulation of CaM-CaMKIV signaling pathway and Tau protein expression.
Amyloid beta-Peptides
;
Animals
;
Apoptosis
;
Calcium-Calmodulin-Dependent Protein Kinase Type 4
;
metabolism
;
Calmodulin
;
metabolism
;
Cell Survival
;
Genistein
;
pharmacology
;
PC12 Cells
;
Peptide Fragments
;
Protective Agents
;
pharmacology
;
Rats
;
Signal Transduction
;
drug effects
7.Synthesis and cytotoxicity evaluation of 3-amino-2-hydroxypropoxygenistein derivatives.
Xiao-Ting GENG ; Jing-Jing TANG ; Kun-Peng CHENG ; Yuan-Tao FU ; Rong HU ; Jin-Rong LU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(11):871-880
Soy isoflavones exhibit various biological activities, such as antioxidant, anti-tumor, anti-inflammatory, and cardiovascular protective effects. The present study was designed to investigate the effects of sixteen synthesized 3-amino-2-hydroxypropoxy genistein derivatives on cell proliferation and activation of Nrf2 (Nuclear factor erythroid 2-related factor 2)/ARE (antioxidant response elements) pathway in human cancer cell lines. Most of the tested compounds exerted greater cytotoxic activity than genistein, as measured by MTT assay. Moreover, compound 8c showed the highest ARE-luciferase reporter activity among the test compounds. It strongly promoted Nrf2 nuclear translocation and up-regulated the expression of total Nrf2 and downstream targets NQO-1 and HO-1 at protein level. The present study may provide a basis for the application of isoflavone derivatives as Nrf2/ARE pathway inducers for cancer therapy and cancer prevention.
Antioxidant Response Elements
;
Cell Line, Tumor
;
Cell Proliferation
;
Genistein
;
chemical synthesis
;
pharmacology
;
therapeutic use
;
Heme Oxygenase-1
;
metabolism
;
Humans
;
Isoflavones
;
NF-E2-Related Factor 2
;
metabolism
;
Neoplasms
;
drug therapy
;
metabolism
;
Signal Transduction
;
Soybeans
;
chemistry
;
Up-Regulation
8.Effects of 7-difluoromethy-5, 4'-dimethoxygenistein on proliferation and apoptosis of human cervical cancer cells and its mechanism.
Yanfen CHEN ; Jun BAI ; Jiali XU ; Xiaohui SONG
Journal of Central South University(Medical Sciences) 2016;41(5):463-470
OBJECTIVE:
To investigate the effects of 7-difluoromethy-5, 4'- dimethoxygenistein (DFMG) on inhibiting proliferation and inducing apoptosis of human cervical cancer HeLa cells and its possible molecular mechanism in vitro.
METHODS:
HeLa cells were cultured in vitro. The effect of DFMG on inhibiting proliferation was determined using MTT assay. The effects of DFMG on inducing apoptosis were assessed using flow cytometry with AV-PI staining, AO/EB staining, and agarose gel electrophoresis. Multiple molecular techniques, such as RT-PCR, Western blot, siRNA transfection, and cDNA transfection, were used to explore its possible molecular mechanism.
RESULTS:
DFMG presented with dramatically inhibiting proliferation effect of HeLa cells in a time-and dose-dependent manner ranging from 0.25 to 64 μg/mL and from 24 to 72 h in vitro, and its IC(50) was 4.62 μg/mL for 48 h. The cells treated with DFMG for 48 h showed typical morphological change of apoptosis, typical DNA ladder of agarose gel electrophoresis, and the sub-G(1) population increased in a dose-dependent manner. Simultaneously the expressions of c-myc mRNA, c-myc protein and its downstream genes, such as bax, cyto-c and caspase-9, were up-regulated, while bcl-2 protein was down-regulated. Down-regulation of c-myc by siRNA attenuated DFMG-induced cell proliferation inhibition and inducing apoptosis. Up-regulation expression of c-myc by cDNA transfection could enhance the effects of DFMG-induced cell proliferation inhibition and inducing apoptosis.
CONCLUSION
DFMG could inhibit the proliferation and induce the apoptosis of human cervical cancer HeLa cells in vitro, and its mechanism may be closely related to regulate c-myc and its down-stream gene expression.
Apoptosis
;
drug effects
;
Caspase 9
;
metabolism
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
Female
;
Gene Expression Regulation, Neoplastic
;
Genistein
;
analogs & derivatives
;
pharmacology
;
HeLa Cells
;
drug effects
;
Humans
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
metabolism
;
Up-Regulation
;
Uterine Cervical Neoplasms
;
pathology
;
bcl-2-Associated X Protein
;
metabolism
9.Oxidative Metabolism of Estrone Modified by Genistein and Bisphenol A in Rat Liver Microsomes.
Ana-Maria GHELDIU ; Daniela-Saveta POPA ; Felicia LOGHIN ; Laurian VLASE
Biomedical and Environmental Sciences 2015;28(11):834-838
Animals
;
Benzhydryl Compounds
;
toxicity
;
Biomarkers
;
analysis
;
blood
;
Breast Neoplasms
;
chemically induced
;
Drug Synergism
;
Endocrine Disruptors
;
toxicity
;
Estrone
;
metabolism
;
Genistein
;
adverse effects
;
Hydroxyestrones
;
analysis
;
Male
;
Microsomes, Liver
;
drug effects
;
metabolism
;
Oxidation-Reduction
;
Phenols
;
toxicity
;
Rats, Wistar
10.Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel.
Huan-Huan CAO ; Fang FANG ; Bo YU ; Jian LUAN ; Yu JIANG ; Hong YANG
Acta Physiologica Sinica 2015;67(2):225-234
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation.
Animals
;
Colforsin
;
Colon
;
metabolism
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
drug effects
;
Flavones
;
physiology
;
Flavonoids
;
pharmacology
;
Genistein
;
Intestinal Mucosa
;
metabolism
;
Mice
;
Rats

Result Analysis
Print
Save
E-mail