1.Mechanism of Danshenol A in Alleviating Myocardial Ischemia-reperfusion Injury-induced Ferroptosis of Cardiomyocytes
Lei ZHANG ; Jiangang LIU ; Peili WANG ; Tao GENG ; Die LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):135-144
ObjectiveTo investigate the mechanism of danshenol A (DA) pretreatment in alleviating myocardial ischemia-reperfusion injury (MIRI) by regulating cardiomyocyte ferroptosis by in vivo and in vitro experiments. MethodsA MIRI model was established in SD rats, and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed with H9C2 cells. Both models were treated with DA. H9C2 cells were allocated into blank, model (OGD/R), DA, ferroptosis inducer (erastin), and ferroptosis inhibitor (Fer-1) groups. Cell viability was assessed by the methyl thiazolyl tetrazolium (MTT) assay. Biochemical assays were performed to measure the superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and ferrous ion (Fe2+) levels. Dihydroethidium (DHE) fluorescence assay was adopted to quantify the reactive oxygen species (ROS) level. Real-time PCR and Western blot were employed to quantify the mRNA and protein levels, respectively, of prostaglandin-endoperoxide synthase 2 (PTGS2), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-coA synthetase long-chain family 4 (ACSL4). Sixty SPF-grade healthy male SD rats were randomly assigned to control, model (MIRI), DA, erastin, and Fer-1 groups. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum levels of cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatine kinase (CK). Histopathological changes in the myocardial tissue were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The effect of DA on cardiomyocyte ferroptosis were observed and analyzed by in vivo and in vitro experiments. ResultsIn vitro experiment: compared with the blank group, the OGD/R model group showed reduced cell viability, elevated levels of ROS, MDA, and Fe2+, up-regulated mRNA and protein levels of ACSL4, lowered levels of SOD and GSH, and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05,P<0.01). The DA and Fer-1 groups exhibited consistent trends: cell viability, SOD and GSH levels, and the mRNA and protein levels of PTGS2, GPX4, and FTH1 were significantly restored, while the ROS, MDA, and Fe2+ levels, and the mRNA and protein levels of ACSL4 were reduced (P<0.05,P<0.01). In vivo experiment: Compared with the control group, the MIRI model group showed elevated serum levels of cTnI, LDH, and CK, increased cardiomyocyte apoptosis rate, risen levels of ROS, MDA, and Fe2+, and up-regulated mRNA and protein levels of ACSL4. However, both DA and Fer-1 groups exhibited reductions in the indicators above (P<0.05). Compared with the control group, the MIRI model group demonstrated reduced levels of SOD and GSH and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05). In contrast, both DA and Fer-1 upregulated these indicators (P<0.05), effectively reversing the trends in the model group. In addition, the MIRI model group showed swelling of cardiomyocytes, disarrangement of cardiac muscle fibers, and massive inflammatory cell infiltration, which were alleviated in the DA and Fer-1 groups. ConclusionDA alleviates MIRI by inhibiting ferroptosis and inflammation, demonstrating therapeutic potential in acute myocardial infarction.
2.Current Status and Optimization Strategies for Investigator Initiated Trial on Traditional Chinese Medicine in the Treatment of Malignant Tumors Conducted by Western Medicine Institutions
Xuechen GENG ; Yanmei LIU ; Qianqian BU ; Qinchang ZHANG ; Dong ZHANG ; Yuquan TAO ; Liu LI ; Ling LI ; Haibo CHENG
Journal of Traditional Chinese Medicine 2025;66(9):878-882
Investigator initiated trial (IIT) represents a primary format for clinical research in traditional Chinese medicine (TCM). As key implementation sites for TCM-based IIT targeting malignant tumors, western medicine institutions often face unique challenges in conducting such studies, which limit their feasibility and standardization. This paper reviews the registration status of TCM-based IIT for malignancies conducted in western medical institutions and analyzes key difficulties, including complex project initiation and management processes, limited TCM knowledge and skills among western medicine physicians, and relatively low patient acceptance of TCM. From a practical perspective, the study proposes several optimization strategies. These include improving the review and management mechanisms of TCM-related IIT within western medical institutions, establishing multidisciplinary clinical research teams that integrate TCM and western medicine, and enhancing investigators' training in TCM theory and clinical skills. Additionally, the study suggests standardizing IIT operational procedures, objectifying the collection of TCM diagnostic information, refining subject recruitment methods, and increasing TCM involvement in patient follow-up and management. These investigator-oriented, TCM-featured, and operable strategies aim to promote the high-quality development of TCM-based IIT in western medicine institutions and enhance the clinical application of TCM.
3.Mechanism of Danshenol A in Alleviating Myocardial Ischemia-reperfusion Injury-induced Ferroptosis of Cardiomyocytes
Lei ZHANG ; Jiangang LIU ; Peili WANG ; Tao GENG ; Die LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):135-144
ObjectiveTo investigate the mechanism of danshenol A (DA) pretreatment in alleviating myocardial ischemia-reperfusion injury (MIRI) by regulating cardiomyocyte ferroptosis by in vivo and in vitro experiments. MethodsA MIRI model was established in SD rats, and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed with H9C2 cells. Both models were treated with DA. H9C2 cells were allocated into blank, model (OGD/R), DA, ferroptosis inducer (erastin), and ferroptosis inhibitor (Fer-1) groups. Cell viability was assessed by the methyl thiazolyl tetrazolium (MTT) assay. Biochemical assays were performed to measure the superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and ferrous ion (Fe2+) levels. Dihydroethidium (DHE) fluorescence assay was adopted to quantify the reactive oxygen species (ROS) level. Real-time PCR and Western blot were employed to quantify the mRNA and protein levels, respectively, of prostaglandin-endoperoxide synthase 2 (PTGS2), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-coA synthetase long-chain family 4 (ACSL4). Sixty SPF-grade healthy male SD rats were randomly assigned to control, model (MIRI), DA, erastin, and Fer-1 groups. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum levels of cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatine kinase (CK). Histopathological changes in the myocardial tissue were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The effect of DA on cardiomyocyte ferroptosis were observed and analyzed by in vivo and in vitro experiments. ResultsIn vitro experiment: compared with the blank group, the OGD/R model group showed reduced cell viability, elevated levels of ROS, MDA, and Fe2+, up-regulated mRNA and protein levels of ACSL4, lowered levels of SOD and GSH, and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05,P<0.01). The DA and Fer-1 groups exhibited consistent trends: cell viability, SOD and GSH levels, and the mRNA and protein levels of PTGS2, GPX4, and FTH1 were significantly restored, while the ROS, MDA, and Fe2+ levels, and the mRNA and protein levels of ACSL4 were reduced (P<0.05,P<0.01). In vivo experiment: Compared with the control group, the MIRI model group showed elevated serum levels of cTnI, LDH, and CK, increased cardiomyocyte apoptosis rate, risen levels of ROS, MDA, and Fe2+, and up-regulated mRNA and protein levels of ACSL4. However, both DA and Fer-1 groups exhibited reductions in the indicators above (P<0.05). Compared with the control group, the MIRI model group demonstrated reduced levels of SOD and GSH and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05). In contrast, both DA and Fer-1 upregulated these indicators (P<0.05), effectively reversing the trends in the model group. In addition, the MIRI model group showed swelling of cardiomyocytes, disarrangement of cardiac muscle fibers, and massive inflammatory cell infiltration, which were alleviated in the DA and Fer-1 groups. ConclusionDA alleviates MIRI by inhibiting ferroptosis and inflammation, demonstrating therapeutic potential in acute myocardial infarction.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.Current status and challenges of development of acupuncture medical devices of TCM.
Renzhong KOU ; Gangqi FAN ; Kaipin GENG ; Qi LIN ; Lamei TAO ; Teng HOU ; Lin WANG
Chinese Acupuncture & Moxibustion 2025;45(7):1019-1026
The paper summarizes the authorized invention patents, device registration and the relevant published articles of acupuncture medical devices of TCM in recent 5 years, and analyzes the current status and challenges in this field. It is discovered that the optimization and substitution in diagnosis and treatment of acupuncture are involved in the development of acupuncture medical devices. The technology application of these devices are composed of traditional and emerging engineering technologies; and the theoretical guidance for their development requires the integration of traditional acupuncture principles with modern medical theories. The development of acupuncture medical devices highlights the characteristics of multidimensional integration, treatment for specific ailments, portability and wearability, painlessness and non-invasion, precision and personalization, as well as intelligent automation. Upon analysis, it is shown that in the development and product transformation of acupuncture medical devices in recent years, the theoretical principles of acupuncture of TCM have not been fully utilized yet, the transformation of patented product is low, the clinical evidence of product is insufficient, and the market competitiveness needs improvement. In the future, The theoretic guidance of acupuncture of TCM should be enhanced in the development of acupuncture medical devices, a production-education- research model with the combination of medicine and engineering be constructed, clinical verification of product be emphasized, and product development paradigms be advanced, so as to meet the demands of the medical market.
Acupuncture Therapy/trends*
;
Humans
;
Medicine, Chinese Traditional/instrumentation*
;
Equipment and Supplies
8.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
9.Research progress in traditional Chinese medicine treatment of kidney-Yang deficiency syndrome by regulating neuro-endocrine-immune system.
Xiao YANG ; Jia-Geng GUO ; Yu DUAN ; Zhen-Dong QIU ; Min-Qi CHEN ; Wei WEI ; Xiao-Tao HOU ; Er-Wei HAO ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2025;50(15):4153-4165
Kidney-Yang deficiency syndrome is a common geriatric disease that underlies chronic conditions such as diabetic nephropathy, chronic kidney disease, and osteoporosis. As age progresses, the kidney-Yang deficiency syndrome showcases increasingly pronounced manifestations, emerging as a key factor in the comorbidities experienced by elderly patients and affecting their quality of life and overall health status. Traditional Chinese medicine(TCM) has been extensively utilized in the treatment of kidney-Yang deficiency syndrome, with Epimedii Folium, Cinnamomi Cortex, and Lycii Fructus widely used in clinical settings. Despite the complexity of the molecular mechanisms involved in treating kidney-Yang deficiency syndrome, the potential therapeutic value of TCM remains compelling. Delving into the mechanisms of TCM treatment of kidney-Yang deficiency syndrome by regulating the neuro-endocrine-immune system can provide a scientific basis for targeted treatments of this syndrome and lay a foundation for the modernization of TCM. The pathophysiology of kidney-Yang deficiency syndrome involves multiple systems, including the interaction of the neuro-endocrine-immune system, the decline in renal function, the intensification of oxidative stress responses, and energy metabolism disorders. Understanding these mechanisms and their interrelationships can help untangle the etiology of kidney-Yang deficiency syndrome, aiding clinicians in making more precise diagnoses and treatments. Furthermore, the research on the specific applications of TCM in research on these pathological mechanisms can enhance the international recognition and status of TCM, enabling it to exert a greater global influence.
Humans
;
Yang Deficiency/physiopathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/physiopathology*
;
Neurosecretory Systems/physiopathology*
;
Animals
;
Kidney/physiopathology*
;
Endocrine System/physiopathology*
;
Immune System/physiopathology*
10.Sub-committee of Anesthesiology of Guangzhou Integrated Traditional Chinese and Western Medicine Society.
Yi LU ; Cunzhi LIU ; Wujun GENG ; Xiaozhen ZHENG ; Jingdun XIE ; Guangfang ZHANG ; Chao LIU ; Yun LI ; Yan QU ; Lei CHEN ; Xizhao HUANG ; Hang TIAN ; Yuhui LI ; Hongxin LI ; Heying ZHONG ; Ronggui TAO ; Jie ZHONG ; Yue ZHUANG ; Junyang MA ; Yan HU ; Jian FANG ; Gaofeng ZHAO ; Jianbin XIAO ; Weifeng TU ; Jiaze SUN ; Yuting DUAN ; Bao WANG
Journal of Southern Medical University 2025;45(8):1800-1808
OBJECTIVES:
To explore the efficacy of DSA-guided intrathecal drug delivery system combined with Zi Wu Liu Zhu Acupoint Therapy for management of cancer pain and provide reference for its standardized clinical application. Methods and.
RESULTS:
Recommendations were formulated based on literature review and expert group discussion, and consensus was reached following expert consultation. The consensus recommendations are comprehensive, covering the entire treatment procedures from preoperative assessment and preparation, surgical operation process, postoperative management and traditional Chinese medicine treatment to individualized treatment planning. The study results showed that the treatment plans combining traditional Chinese with Western medicine effectively alleviated cancer pain, reduced the use of opioid drugs, and significantly improved the quality of life and enhanced immune function of the patients. Postoperative follow-up suggested good treatment tolerance among the patients without serious complications.
CONCLUSIONS
The formulated consensus is comprehensive and can provide reference for clinicians to use DSA-guided intrathecal drug delivery system combined with Zi Wu Liu Zhu Acupoint Therapy. The combined treatment has a high clinical value with a good safety profile for management of cancer pain.
Humans
;
Medicine, Chinese Traditional
;
Cancer Pain/therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Drug Delivery Systems
;
Pain Management/methods*
;
China

Result Analysis
Print
Save
E-mail