1.Targeted gene silencing in mouse testicular Sertoli and Leydig cells using adeno-associated virus vectors.
Jing PANG ; Mao-Xing XU ; Xiao-Yu WANG ; Xu FENG ; Yi-Man DUAN ; Xiao-Yan ZHENG ; Yu-Qian CHEN ; Wen YIN ; Ying LIU ; Ju-Xue LI
Asian Journal of Andrology 2025;27(5):627-637
Researchers commonly use cyclization recombination enzyme/locus of X-over P1 (Cre/loxP) technology-based conditional gene knockouts of model mice to investigate the functional roles of genes of interest in Sertoli and Leydig cells within the testis. However, the shortcomings of these genetic tools include high costs, lengthy experimental periods, and limited accessibility for researchers. Therefore, exploring alternative gene silencing techniques is of great practical value. In this study, we employed adeno-associated virus (AAV) as a vector for gene silencing in Sertoli and Leydig cells. Our findings demonstrated that AAV serotypes 1, 8, and 9 exhibited high infection efficiency in both types of testis cells. Importantly, we discovered that all three AAV serotypes exhibited exquisite specificity in targeting Sertoli cells via tubular injection while demonstrating remarkable selectivity in targeting Leydig cells via interstitial injection. We achieved cell-specific knockouts of the steroidogenic acute regulatory ( Star ) and luteinizing hormone/human chorionic gonadotropin receptor (Lhcgr) genes in Leydig cells, but not in Sertoli cells, using AAV9-single guide RNA (sgRNA)-mediated gene editing in Rosa26-LSL-Cas9 mice. Knockdown of androgen receptor ( Ar ) gene expression in Sertoli cells of wild-type mice was achieved via tubular injection of AAV9-short hairpin RNA (shRNA)-mediated targeting. Our findings offer technical approaches for investigating gene function in Sertoli and Leydig cells through AAV9-mediated gene silencing.
Animals
;
Male
;
Leydig Cells/metabolism*
;
Mice
;
Dependovirus/genetics*
;
Sertoli Cells/metabolism*
;
Gene Silencing
;
Genetic Vectors
;
Testis/cytology*
2.Baculovirus expression system-based expression of horseshoe crab factor C and its activity.
Lan LAN ; Huanlei LIU ; Hao NAN ; Sijun HE ; Wangcheng SONG ; Yunlong WANG ; Xinjuan FAN ; Xiangbo WAN ; Xiaodong XU
Chinese Journal of Biotechnology 2025;41(4):1428-1439
Endotoxins are common exogenous pyrogens. Excessive endotoxins in medical devices and injections can lead to serious consequences such as sepsis, septic shock, and even death. Therefore, endotoxin detection plays a crucial role in medical, pharmaceutical, and food sectors. The wide application of Limulus amebocyte lysate (LAL) has led to a sharp decline in the number of horseshoe crabs. Moreover, the LAL assay has limitations such as interbatch variations and difficulty in quantification. The recombinant factor C (rFC) assay is stable between batches, highly sensitive, and capable of quantitation, and thus it can be used as an alternative for the LAL assay. However, the high cost and complex procedures involved in producing recombinant factor C have limited the widespread application of this method. In order to simplify the preparation and reduce the production cost of recombinant factor C, this study focuses on the production of recombinant factor C based on the baculovirus expression system. Multiple measures such as a high-yield and anti-apoptotic vector qBac-IIIG, the optimal signal peptide, and the optimized codon were used to reach the goal of endotoxin detection with cell supernatant. This method simplifies the steps of protein purification. The sensitivity of the supernatant reached 0.05 EU/mL in a 1-L fermentation system, and 500 000 detecting reactions can be supported per liter of fermentation broth. This study increases the yield and activity of recombinant factor C, simplifies the procedures of protein purification, and reduces the cost, laying a foundation for the promotion and application of recombinant factor C in endotoxin detection.
Animals
;
Recombinant Proteins/genetics*
;
Horseshoe Crabs/chemistry*
;
Baculoviridae/metabolism*
;
Endotoxins/analysis*
;
Protein C/biosynthesis*
;
Genetic Vectors/genetics*
;
Arthropod Proteins/genetics*
;
Enzyme Precursors
;
Serine Endopeptidases
3.Optimization of the Bombyx mori baculovirus expression system enhances the expression level of recombinant human keratinocyte growth factor-1 (hKGF-1).
Shuohao LI ; Xingyang WANG ; Xiaofeng WU ; Yujing XU ; Tian YANG ; Xinyu ZHU
Chinese Journal of Biotechnology 2025;41(7):2634-2646
Human keratinocyte growth factor-1 (hKGF-1), a member of the fibroblast growth factor (FGF) family, plays crucial roles in organ development, cell proliferation, wound healing, and tissue repair, representing one of the most effective and specific growth factors for skin repair. However, obtaining recombinant hKGF-1 remains challenging due to its universally low expression efficiency in vitro. This study employs the Bombyx mori baculovirus expression system to establish a technological platform that utilizes the economically important insect Bombyx mori as a bioreactor for high-efficiency and low-cost expression and production of recombinant human keratinocyte growth factor 1 (hKGF-1) protein, ultimately achieving high-level expression of hKGF-1 in Bombyx mori ovary cell line (BmN). In this study, we optimized the hKGF-1 sequence based on the codon preference of baculovirus. By fusing hKGF-1 with polyhedrin (highly expressed in this system) and adding extra promoters and enhancers, we significantly improved the expreesion level of hKGF-1 in Bombyx mori cells. The results demonstrated that the aforementioned strategies significantly enhanced the expression level of hKGF-1 in Bombyx mori cells. SDS-PAGE and Western blotting results revealed that the highest hKGF-1 expression (accounting for 8.7% of total cellular protein) was achieved when the Polh promoter was combined in tandem with the P6.9 promoter and hKGF-1 was fused with a 15-residue polyhedrin fragment for co-expression. The optimal harvest time was determined to be 120 h post transfection. This study achieved the efficient expression of hKGF-1 in Bombyx mori cells, establishing an ideal technological platform for the industrial utilization of recombinant hKGF-1. The developed methodology not only provides valuable technical references for the production of other growth factors and complex proteins, but also demonstrates significant implications for employing silkworms as bioreactors for recombinant human protein expression.
Bombyx/metabolism*
;
Animals
;
Baculoviridae/metabolism*
;
Humans
;
Fibroblast Growth Factor 7/biosynthesis*
;
Recombinant Proteins/genetics*
;
Cell Line
;
Genetic Vectors/genetics*
4.Prokaryotic expression and purification of the transcription factor TaNAC14 in wheat (Triticum aestivum).
Zhijun CHEN ; Lijian ZHANG ; Qing CHI ; Baowei WU ; Lanjiya AO ; Huixian ZHAO
Chinese Journal of Biotechnology 2024;40(11):4171-4182
The transcription factors (TFs) in the NAC family are involved in regulating multiple biological processes, playing an important role in plant growth, development, and stress adaptation. Our previous studies have demonstrated that TaNAC14, a member of the NAC family in wheat (Triticum aestivum L.), positively regulates root growth and development and enhances the drought tolerance of wheat seedlings. In this study, we analyzed the physicochemical properties and structure and verified the subcellular localization and transcriptional activation activity of TaNAC14. The prokaryotic expression vector pET21a-HMT-TaNAC14 was constructed and transformed into Escherichia coli BL21 CodonPlus (DE3)-RIPL. The conditions for inducing the expression of the recombinant protein HMT-TaNAC14 were optimized. The solubility of the recombinant protein was analyzed, and the protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The results indicated that TaNAC14 had a conserved domain of the NAM family. It was located in the nucleus and had transcriptional activation activity. The optimal conditions for expression of the recombinant protein in E. coli were induction with 0.2mmol/L IPTG for 4 h. The recombinant protein mainly existed in the soluble form, and the target protein was obtained after purification. This study lays a foundation for the identification of target genes regulated by TaNAC14.
Triticum/metabolism*
;
Escherichia coli/metabolism*
;
Plant Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Recombinant Proteins/metabolism*
;
Genetic Vectors/genetics*
5.Enhancing the expression level of human epidermal growth factor using the polyhedrin protein sequence of BmNPV.
Yuedong LI ; Xingyang WANG ; Shuohao LI ; Xiaofeng WU
Chinese Journal of Biotechnology 2024;40(11):4211-4218
Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with hEGF and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected hEGF genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated hEGF genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.
Humans
;
Epidermal Growth Factor/biosynthesis*
;
Genetic Vectors/genetics*
;
Recombinant Fusion Proteins/biosynthesis*
;
Animals
;
Bombyx/metabolism*
;
Occlusion Body Matrix Proteins/genetics*
;
Nucleopolyhedroviruses/genetics*
;
Amino Acid Sequence
6.Construction of recombinant adenovirus expressing EGFRvIII extracellular domain gene and preparation of single domain antibody.
Huimin ZHANG ; Jiaqi XU ; Yi CHENG ; Shan FU ; Yanlong LIU ; Yujing HU ; Yanan DU ; Fuxiang BAO
Chinese Journal of Biotechnology 2022;38(9):3551-3562
The aim of this study was to construct a recombinant adenovirus expressing extracellular domain gene of human epidermal growth factor receptor variant Ⅲ (EGFRvIII ECD), and to prepare single domain antibody targeting EGFRvIII ECD by immunizing camels and constructing phage display antibody library. Total RNA was extracted from human prostate cancer cell line PC-3 cells and reversely transcribed into cDNA. EGFRvIII ECD gene was amplified using cDNA as template, and ligated into pAdTrack-CMV plasmid vector and transformed into E. coli BJ5183 competent cells containing pAdEasy-1 plasmid for homologous recombination. The recombinant adenovirus expressing EGFRvIII ECD was obtained through transfecting the plasmid into HEK293A cells. The recombinant adenovirus was used to immunize Bactrian camel to construct EGFRvIII ECD specific single domain antibody library. The single domain antibody was obtained by screening the library with EGFRvIII protein and the antibody was expressed, purified and identified. The results showed that recombinant adenovirus expressing EGFRvIII ECD was obtained. The capacity of EGFRvIII specific phage single domain antibody library was 1.4×109. After three rounds of enrichment and screening, thirty-one positive clones binding to EGFRvIII ECD were obtained by phage-ELISA, and the recombinant single domain antibody E14 with highest OD450 value was expressed and purified. The recombinant E14 antibody can react with EGFRvIII ECD with high affinity in ELISA assessment. The results indicated that the EGFRvIII specific single domain antibody library with high capacity and diversity was constructed and the single domain antibody with binding activity to EGFRvIII was obtained by screening the library. This study may facilitate the diagnosis and treatment of EGFRvIII targeted malignant tumors in the future.
Adenoviridae/genetics*
;
DNA, Complementary
;
ErbB Receptors
;
Escherichia coli/genetics*
;
Genetic Vectors/genetics*
;
Humans
;
RNA
;
Recombinant Proteins/metabolism*
;
Single-Domain Antibodies
7.Construction of a novel lentiviral vector knocking down PD-1 via microRNA and its application in CAR-T cells.
Hui CHEN ; Xi JIN ; Xiaoman ZHANG ; Jimin GAO
Chinese Journal of Biotechnology 2020;36(7):1395-1404
By inserting microRNAs into the intron of EF1α promoter, we constructed a novel lentiviral vector knocking down PD-1 gene via microRNA and applied it to CAR-T cells. Lentiviral transduction efficiency and PD-1-silencing efficiency were detected by flow cytometry. PD-1 expression was detected by Western blotting. Relative expression of microRNA was measured by Q-PCR. Cytotoxicity of CAR-T cells based on this vector was tested by luciferase bioluminescence and flow cytometry. Compared with lentiviral vector with microRNA transcribed by U6 promotor, the transduction efficiency of lentiviral vector with microRNA which was inserted into the intron of EF1α promoter was more significant, and the knockdown rate of PD-1 was more than 90%, which was validated by flow cytometry and Western blotting. And the relative expression level of microRNA in Jurkat cells transduced with this novel lentiviral vector was shown by Q-PCR. Compared with normal CAR-T cells, CAR-T cells based on this vector showed stronger cytotoxicity against PD-L1 positive Raji cells. We successfully constructed a novel lentiviral vector that knocked down PD-1 via microRNA and verified the superiority of its transduction efficiency and knockdown efficiency of PD-1. CAR-T cells based on this vector can exert a more powerful cytotoxicity, thus providing theoretical support for the subsequent treatment of PD-L1 positive tumors.
Cell Line, Tumor
;
Gene Knockdown Techniques
;
Genetic Vectors
;
genetics
;
Humans
;
Lentivirus
;
genetics
;
MicroRNAs
;
metabolism
;
Programmed Cell Death 1 Receptor
;
Promoter Regions, Genetic
;
genetics
8.Prokaryotic expression, purification and functional identification of epidermal pattern factors in Arabidopsis thaliana.
Zhuping JIN ; Cheng LI ; Lei WANG ; Yanxi PEI
Chinese Journal of Biotechnology 2020;36(4):792-800
Stomatal density is important for crop yield. In this paper, we studied the epidermal pattern factors (EPFs) related to stomatal development. Prokaryotic expression vectors were constructed to obtain EPFs. Then the relationship between EPFs and hydrogen sulfide (H2S) was established. First, AtEPF1, AtEPF2 and AtEPFL9 were cloned and constructed to pET28a vectors. Then recombinant plasmids pET28a-AtEPF1, pET28a-AtEPF2 and pET28a-AtEPFL9 were digested and sequenced, showing successful construction. Finally, they were transformed into E. coli BL21(DE3) separately and induced to express by isopropyl β-D-galactoside (IPTG). The optimized expression conditions including IPTG concentration (0.5, 0.3 and 0.05 mmol/L), temperature (28 °C, 28 °C and 16 °C) and induction time (16 h, 16 h and 20 h) were obtained. The bands of purified proteins were about 18 kDa, 19 kDa and 14.5 kDa, respectively. In order to identify their function, the purified AtEPF2 and AtEPFL9 were presented to Arabidopsis thaliana seedlings. Interestingly, the H2S production rate decreased or increased compared with the control, showing significant differences. That is, EPFs affected the production of endogenous H2S in plants. These results provide a foundation for further study of the relationship between H2S and EPFs on stomatal development, but also a possible way to increase the yield or enhance the stress resistance.
Arabidopsis
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
genetics
;
isolation & purification
;
metabolism
;
Escherichia coli
;
genetics
;
Genetic Vectors
;
genetics
;
Hydrogen Sulfide
;
metabolism
;
Plasmids
;
genetics
;
Seedlings
;
metabolism
9.Silencing Calreticulin Expression Inhibits Invasion Ability of SNK6 Cells in Vitro via Down-Regulating Expression of VEGF and MMP2/9.
Yan ZHENG ; Xiong-Peng ZHU ; Chun-Tuan LI ; Yuan-Ling HUANG
Journal of Experimental Hematology 2019;27(2):433-438
OBJECTIVE:
To investigate the effect of steadily down-regulating the expression of calreticulin (CALR) on the invasion of natural killer/T-cell lymphoma SNK6 cells, and explore its possible mechanism.
METHODS:
The sequences of specific short hairpin RNA (shRNA) targeting on human CALR were designed, and were inserted into pLKO.1-puro lentivirus vector, and the reconbinant lentivirus vector was obtained; the lentivirus particles were backed by three-plasmid system and transfected into SNK6 cells, the SNK6 cells stably down-regulating the CALR expression were sercened by puromytain, the CALR-silencing effect was verified by real-time PCR and Western blot. CCK-8 assay was used to evaluate the cell viability, The transwell invasion assays was used to analyse invasion of SNK6 cells. The mRNA expression of Calreticulin, MMP2, MMP9 and VEGF was determined by real time PCR, the protein expression of Calreticulin and GAPDH was analyzed by Western blot.
RESULTS:
The recombinant lentiviral vector pLKO.1-puro-shCALR was successfully constructed, packed into the lentivirus, then the SNK6 cells stably down-regulating Calreticulin expression was obtained. When Calreticulin was down-rengulated in SNK6 cells, the proliferation rate was reduced and the invasion ability was decreased; the mRNA levels of VEGF and MMP-2/9 also were reduced.
CONCLUSION
The stable down-regnlation of CALR expression in SNK6 cells can attenuate the imvasiveness of SNK6 cells, which maybe related with transcriptional decrease of MMP2, MMP9 and VEGF.
Calreticulin
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Proliferation
;
Down-Regulation
;
Genetic Vectors
;
Humans
;
Lentivirus
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
RNA Interference
;
RNA, Small Interfering
;
Transfection
;
Vascular Endothelial Growth Factor A
10.Rapid and Sparse Labeling of Neurons Based on the Mutant Virus-Like Particle of Semliki Forest Virus.
Fan JIA ; Xutao ZHU ; Pei LV ; Liang HU ; Qing LIU ; Sen JIN ; Fuqiang XU
Neuroscience Bulletin 2019;35(3):378-388
Sparse labeling of neurons contributes to uncovering their morphology, and rapid expression of a fluorescent protein reduces the experiment range. To achieve the goal of rapid and sparse labeling of neurons in vivo, we established a rapid method for depicting the fine structure of neurons at 24 h post-infection based on a mutant virus-like particle of Semliki Forest virus. Approximately 0.014 fluorescent focus-forming units of the mutant virus-like particle transferred enhanced green fluorescent protein into neurons in vivo, and its affinity for neurons in vivo was stronger than for neurons in vitro and BHK21 (baby hamster kidney) cells. Collectively, the mutant virus-like particle provides a robust and convenient way to reveal the fine structure of neurons and is expected to be a helper virus for combining with other tools to determine their connectivity. Our work adds a new tool to the approaches for rapid and sparse labeling of neurons in vivo.
Animals
;
Cells, Cultured
;
Gene Expression
;
Genetic Vectors
;
genetics
;
metabolism
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Immunohistochemistry
;
methods
;
Male
;
Mice, Inbred C57BL
;
Microscopy, Fluorescence
;
methods
;
Neurons
;
cytology
;
metabolism
;
Purkinje Cells
;
cytology
;
metabolism
;
Semliki forest virus
;
genetics

Result Analysis
Print
Save
E-mail