1.Transposable elements in health and disease: Molecular basis and clinical implications.
Chinese Medical Journal 2025;138(18):2220-2233
Transposable elements (TEs), once considered genomic "junk", are now recognized as critical regulators of genome function and human disease. These mobile genetic elements-including retrotransposons (long interspersed nuclear elements [LINE-1], Alu, short interspersed nuclear element-variable numbers of tandem repeats-Alu [SVA], and human endogenous retrovirus [HERV]) and DNA transposons-are tightly regulated by multilayered mechanisms that operate from transcription through to genomic integration. Although typically silenced in somatic cells, TEs are transiently activated during key developmental stages-such as zygotic genome activation and cell fate determination-where they influence chromatin architecture, transcriptional networks, RNA processing, and innate immune responses. Dysregulation of TEs, however, can lead to genomic instability, chronic inflammation, and various pathologies, including cancer, neurodegeneration, and aging. Paradoxically, their reactivation also presents new opportunities for clinical applications, particularly as diagnostic biomarkers and therapeutic targets. Understanding the dual role of TEs-and balancing their contributions to normal development and disease-is essential for advancing novel therapies and precision medicine.
Humans
;
DNA Transposable Elements/physiology*
;
Animals
;
Long Interspersed Nucleotide Elements/genetics*
;
Neoplasms/genetics*
;
Genomic Instability/genetics*
;
Endogenous Retroviruses/genetics*
2.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
3.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
4.Research progress on polymorphism of vitamin D and its receptor gene and susceptibility to bone tuberculosis.
Xin-Feng LIU ; Yan-Jun ZHANG ; Jun-Jie LI ; Jun YANG ; Hong-Jing TIAN
China Journal of Orthopaedics and Traumatology 2025;38(2):211-216
Bone tuberculosis is one of the main lesions of extrapulmonary tuberculosis, and the affected site shows local pain and limited movement, and the severe patients face a higher risk of teratogenicity and disability. Especially in the context of the increasing spread of multidrug-resistant tuberculosis, it is particularly urgent to seek innovative treatment options. In recent years, vitamin D plays an important role in the prevention and treatment of bone tuberculosis, and the mechanism of action has been continuously explored. At the same time, vitamin D receptor gene polymorphism has also been found to be closely related to the susceptibility and risk of bone tuberculosis. This article reviewed the relationship between vitamin D and its receptor gene polymorphisms and the susceptibility to bone tuberculosis. It was found that vitamin D deficiency increased the susceptibility to bone tuberculosis in both adults and children, and multiple genotypes of vitamin D receptor had an effect on the susceptibility to bone tuberculosis, especially FokⅠ genotype. It may also be one of the reasons for the increase in the number of bone tuberculosis. Through the study of the relationship between vitamin D and its receptor gene polymorphism and the susceptibility to bone tuberculosis, some factors inducing bone tuberculosis can be avoided, and related new drugs can be more targeted, such as vitamin D supplements, gene receptor related antagonists, etc. To provide more systematic and targeted strategies for the prevention and treatment of bone tuberculosis.
Humans
;
Receptors, Calcitriol/genetics*
;
Genetic Predisposition to Disease
;
Polymorphism, Genetic
;
Vitamin D/metabolism*
;
Tuberculosis, Osteoarticular/metabolism*
5.Study on the correlation between MASP-2 and diseases.
Yu CAO ; Yan ZHOU ; Tianjun JIA
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):661-666
Mannose-binding lectin-associated serine protease 2(MASP-2) is a member of serine protease family and plays a crucial role in activating the complement lectin pathway. When mannose residues on the surface of a pathogen are recognized by mannose-binding lectins (MBL) or fibrinogen collagen (FCN), MASP-2 is activated. This activation then triggers the cleavage of C4 and C2 to form C3 convertase, thereby initiating the lectin pathway of the complement system. Numerous studies have demonstrated that MASP-2 gene polymorphisms and serum levels are closely related with various diseases, including tumors, infectious diseases, autoimmune diseases and so on. In this review, we summarize the relationships between MASP-2 and tumors, infectious diseases, autoimmune diseases. We aim to provide a theoretical basis for the early diagnosis, prognosis evaluation and clinical treatment of various diseases.
Humans
;
Mannose-Binding Protein-Associated Serine Proteases/metabolism*
;
Neoplasms/metabolism*
;
Autoimmune Diseases/genetics*
;
Animals
;
Polymorphism, Genetic
;
Communicable Diseases/genetics*
6.A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility.
Zheng ZHOU ; Qi QI ; Wen-Hua WANG ; Jie DONG ; Juan-Juan XU ; Yu-Ming FENG ; Zhi-Chuan ZOU ; Li CHEN ; Jin-Zhao MA ; Bing YAO
Asian Journal of Andrology 2025;27(1):113-119
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 ( CFAP300 ) resulting in a stop codon (p.Glu156*) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Adult
;
Female
;
Humans
;
Male
;
Pregnancy
;
China
;
Ciliary Motility Disorders/genetics*
;
Codon, Nonsense
;
East Asian People/genetics*
;
Exome Sequencing
;
Homozygote
;
Infertility, Male/genetics*
;
Kartagener Syndrome/genetics*
;
Pedigree
;
Sperm Injections, Intracytoplasmic
;
Cytoskeletal Proteins/genetics*
7.Study on the influence of the sY1192 gene locus in the AZFb/c region on sperm quality and pregnancy outcome.
Gang-Xin CHEN ; Yan SUN ; Rui YANG ; Zhi-Qing HUANG ; Hai-Yan LI ; Bei-Hong ZHENG
Asian Journal of Andrology 2025;27(2):231-238
Y chromosome microdeletions are an important cause of male infertility. At present, research on the Y chromosome is mainly focused on analyzing the loss of large segments of the azoospermia factor a/b/c (AZFa/b/c) gene, and few studies have reported the impact of unit point deletion in the AZF band on fertility. This study analyzed the effect of sperm quality after sY1192 loss in 116 patients. The sY1192-independent deletion accounted for 41.4% (48/116). Eight patterns were found in the deletions associated with sY1192. The rate of sperm detection was similar in the semen of patients with the independent sY1192 deletion and the combined sY1192 deletions (52.1% vs 50.0%). The patients with only sY1192 gene loss had a higher probability of sperm detection than the patients whose sY1192 gene locus existed, but other gene loci were lost (52.1% vs 32.0%). The hormone levels were similar in patients with sY1192 deletion alone and in those with sY1192 deletion and other types of microdeletions in the presence of the sY1192 locus. After multiple intracytoplasmic sperm injection (ICSI) attempts, the pregnancy rate of spouses of men with sY1192-independent deletions was similar to that of other types of microdeletions, but the fertilization and cleavage rates were higher. We observed that eight deletion patterns were observed for sY1192 microdeletions of AZFb/c, dominated by the independent deletion of sY1192. After ICSI, the fertilization rate and cleavage rate of the sY1192-independent microdeletion were higher than those of other Y chromosome microdeletion types, but there was no significant difference in pregnancy outcomes.
Humans
;
Female
;
Pregnancy
;
Male
;
Chromosomes, Human, Y/genetics*
;
Adult
;
Chromosome Deletion
;
Pregnancy Outcome/genetics*
;
Infertility, Male/genetics*
;
Spermatozoa/physiology*
;
Semen Analysis
;
Sex Chromosome Disorders of Sex Development/genetics*
;
Sperm Injections, Intracytoplasmic
;
Azoospermia/genetics*
;
Sex Chromosome Aberrations
8.Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters.
Shun-Han ZHANG ; Ying-Jun XIE ; Wen-Jun QIU ; Qian-Ying PAN ; Li-Hao CHEN ; Jian-Feng WU ; Si-Qi HUANG ; Ding WANG ; Xiao-Fang SUN
Asian Journal of Andrology 2025;27(4):537-542
Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected. Genetic analysis was used to determine whether the sex chromosome involved in male infertility was abnormal (including the increase, deletion, and translocation of the X and Y chromosomes), and subsequent semen analysis was conducted for clinical grouping purposes. The participants were categorized into five groups: normozoospermia, asthenozoospermia, oligozoospermia, oligoasthenozoospermia, and azoospermia. Patients were randomly selected for further study; 41 patients with normozoospermia were included in the control group and 117 patients with non-normozoospermia were included in the study group according to the proportions of all enrolled patients. Cytokinesis-block micronucleus (CBMN) screening was conducted through peripheral blood. Statistical analysis was used to determine the differences in micronuclei (MNi) among the groups and the relationships between MNi and clinical data. There was a significant increase in MNi in infertile men, including those with azoospermia, compared with normozoospermic patients, but there was no significant difference between the genetic and nongenetic groups in azoospermic men. The presence of MNi was associated with sperm concentration, progressive sperm motility, immotile spermatozoa, malformed spermatozoa, total sperm count, and total sperm motility. This study underscores the potential utility of MNi as a diagnostic tool and highlights the need for further research to elucidate the underlying mechanisms of male infertility.
Humans
;
Male
;
Infertility, Male/genetics*
;
Adult
;
Micronucleus Tests
;
Semen Analysis
;
Oligospermia/genetics*
;
Azoospermia/genetics*
;
Chromosome Aberrations
;
Sperm Count
;
Micronuclei, Chromosome-Defective
;
Middle Aged
9.Effect of interleukin-17 gene polymorphism on susceptibility to cow's milk protein allergy in infants and its association with gut microbiota.
Wen-Ying HAO ; Chun ZHU ; Song LU ; Hong WANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):696-701
OBJECTIVES:
To investigate the effect of interleukin-17 (IL-17) gene polymorphism on the susceptibility to cow's milk protein allergy (CMPA) in infants and its association with gut microbiota.
METHODS:
A prospective study was conducted involving 100 infants diagnosed with CMPA at the Women and Children's Hospital of Ningbo University from January 2022 to October 2024. A total of 100 healthy infants undergoing routine check-ups at the same hospital during the same period was enrolled as the control group. Medical information was obtained through the electronic medical record system. IL-17A (rs2275913) and IL-17F (rs1889570) polymorphisms were detected using polymerase chain reaction-restriction fragment length polymorphism method. Serum IL-17 levels were measured using enzyme-linked immunosorbent assay, and high-throughput sequencing was employed to analyze the relative abundance of Lactobacillus and Bifidobacterium. Multivariate logistic regression analysis was used to explore the influencing factors of CMPA occurrence in infants.
RESULTS:
The proportions of infants with a family history of allergy and those with vitamin D deficiency or insufficiency were significantly higher in the CMPA group compared to those in the control group (P<0.05). The distribution of IL-17F (rs1889570) genotypes showed significant differences between the CMPA and control groups (P<0.05), with the frequency of the A allele being significantly higher in the CMPA group (P<0.05). Multivariate logistic regression analysis revealed that a family history of allergy, vitamin D deficiency or insufficiency, and carrying the IL-17F (rs1889570) AA genotype were independent influencing factors for CMPA in infants (P<0.05). Infants in the CMPA group with the IL-17F (rs1889570) AA genotype had significantly higher serum IL-17 levels compared to those with AG/GG genotypes (P<0.05), while the relative abundance of Lactobacillus and Bifidobacterium was significantly lower (P<0.05).
CONCLUSIONS
IL-17F (rs1889570) gene polymorphism influences susceptibility to CMPA in infants, potentially through mechanisms involving IL-17 expression and the relative abundance of gut probiotics.
Humans
;
Interleukin-17/genetics*
;
Milk Hypersensitivity/microbiology*
;
Female
;
Infant
;
Male
;
Prospective Studies
;
Genetic Predisposition to Disease
;
Gastrointestinal Microbiome
;
Polymorphism, Genetic
;
Milk Proteins/immunology*
10.Research progress on copy number alterations in pediatric B-cell acute lymphoblastic leukemia.
Chinese Journal of Contemporary Pediatrics 2025;27(6):746-752
Copy number alteration (CNA) is a significant genetic change in pediatric B-cell acute lymphoblastic leukemia (B-ALL), with CDKN2A/B deletions, PAX5 deletions, and IKZF1 deletions being the most common. Recent studies have increasingly highlighted the potential prognostic significance of these gene deletions and multiple co-deletions in pediatric B-ALL. This paper reviews the main detection methods for CNA, as well as the prognostic characteristics and treatment approaches for common CNA in pediatric B-ALL.
Humans
;
DNA Copy Number Variations
;
Child
;
PAX5 Transcription Factor/genetics*
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Cyclin-Dependent Kinase Inhibitor p15/genetics*
;
Ikaros Transcription Factor/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Gene Deletion
;
Cyclin-Dependent Kinase Inhibitor p16/genetics*
;
Prognosis

Result Analysis
Print
Save
E-mail